Targeting HIF-α for robust prevascularization of human cardiac organoids
Robert C. Coyle
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorRyan W. Barrs
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorDylan J. Richards
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorEmma P. Ladd
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorDonald R. Menick
Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, South Carolina, USA
Department of Medicine, Division of Cardiology, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
Search for more papers by this authorCorresponding Author
Ying Mei
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
Correspondence
Ying Mei, Bioengineering Department, Clemson University, 68 President St, Room BE310, Charleston, SC 29425, USA.
Email: [email protected]
Search for more papers by this authorRobert C. Coyle
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorRyan W. Barrs
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorDylan J. Richards
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorEmma P. Ladd
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorDonald R. Menick
Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, South Carolina, USA
Department of Medicine, Division of Cardiology, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
Search for more papers by this authorCorresponding Author
Ying Mei
Bioengineering Department, Clemson University, Clemson, South Carolina, USA
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
Correspondence
Ying Mei, Bioengineering Department, Clemson University, 68 President St, Room BE310, Charleston, SC 29425, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Prevascularized 3D microtissues have been shown to be an effective cell delivery vehicle for cardiac repair. To this end, our lab has explored the development of self-organizing, prevascularized human cardiac organoids by coseeding human cardiomyocytes with cardiac fibroblasts, endothelial cells, and stromal cells into agarose microwells. We hypothesized that this prevascularization process is facilitated by the endogenous upregulation of hypoxia-inducible factor (HIF) pathway in the avascular 3D microtissues. In this study, we used Molidustat, a selective prolyl hydroxylase domain enzyme (PHD) inhibitor that stabilizes HIF-α, to treat human cardiac organoids, which resulted in 150% ± 61% improvement in endothelial expression (CD31) and 220% ± 20% improvement in the number of lumens per organoids. We hypothesized that the improved endothelial expression seen in Molidustat-treated human cardiac organoids was dependent upon upregulation of vascular endothelial growth factor (VEGF), a well-known downstream target of HIF pathway. Through the use of immunofluorescent staining and ELISA assays, we determined that Molidustat treatment improved VEGF expression of nonendothelial cells and resulted in improved colocalization of supporting cell types and endothelial structures. We further demonstrated that Molidustat-treated human cardiac organoids maintain cardiac functionality. Lastly, we showed that Molidustat treatment improves survival of cardiac organoids when exposed to both hypoxic and ischemic conditions in vitro. For the first time, we demonstrate that targeted HIF-α stabilization provides a robust strategy to improve endothelial expression and lumen formation in cardiac microtissues, which will provide a powerful framework for prevascularization of various microtissues in developing successful cell transplantation therapies.
CONFLICT OF INTEREST
The authors have no conflict of interest to report.
Supporting Information
Filename | Description |
---|---|
term3165-sup-0001-fig_s1.tif707.1 KB | Supplementary Material 1 |
term3165-sup-0002-fig_s2.tif2.2 MB | Supplementary Material 2 |
term3165-sup-0003-fig_s3.tif649.9 KB | Supplementary Material 3 |
term3165-sup-0004-fig_s4.tif4.4 MB | Supplementary Material 4 |
term3165-sup-0005-fig_s5.tif4.2 MB | Supplementary Material 5 |
term3165-sup-0006-fig_s6.tif580.5 KB | Supplementary Material 6 |
term3165-sup-0007-fig_s7.tif5 MB | Supplementary Material 7 |
term3165-sup-0008-fig_s8.tif3.2 MB | Supplementary Material 8 |
term3165-sup-0009-fig_s9.tif4.5 MB | Supplementary Material 9 |
term3165-sup-0010-fig_s10.tif3 MB | Supplementary Material 10 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Barad, L., Schick, R., Zeevi-Levin, N., Itskovitz-Eldor, J., & Binah, O. (2014). Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair. Canadian Journal of Cardiology, 30(11), 1279–1287. https://doi.org/10.1016/j.cjca.2014.06.023
- Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., … Wu, J. C. (2014). Chemically defined generation of human cardiomyocytes. Nature Methods, 11(8), 855–860. https://doi.org/10.1038/nmeth.2999
- Cheema, U., Brown, R. A., Alp, B., & MacRobert, A. J. (2008). Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cellular and Molecular Life Sciences, 65(1), 177–186. https://doi.org/10.1007/s00018-007-7356-8
- Chong, J. J., Yang, X., Don, C. W., Minami, E., Liu, Y. W., Weyers, J. J., … Murry, C. E. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510(7504), 273–277. https://doi.org/10.1038/nature13233
- Coyle, R., Yao, J., Richards, D., & Mei, Y. (2019). The effects of metabolic Substrate Availability on human adipose-derived stem cell spheroid survival. Tissue Engineering Part A, 25(7–8), 620–631. https://doi.org/10.1089/ten.TEA.2018.0163
- De Moor, L., Merovci, I., Baetens, S., Verstraeten, J., Kowalska, P., Krysko, D. V., … Declercq, H. (2018). High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication, 10(3), 035009. https://doi.org/10.1088/1758-5090/aac7e6
- Fennema, E., Rivron, N., Rouwkema, J., van Blitterswijk, C., & de Boer, J. (2013). Spheroid culture as a tool for creating 3D complex tissues. Trends in Biotechnology, 31(2), 108–115. https://doi.org/10.1016/j.tibtech.2012.12.003
- Fong, G. H. (2009). Regulation of angiogenesis by oxygen sensing mechanisms. Journal of Molecular Medicine (Berlin), 87(6), 549–560. https://doi.org/10.1007/s00109-009-0458-z
- Fong, T. A., Shawver, L. K., Sun, L., Tang, C., App, H., Powell, T. J., … McMahon, G. (1999). SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Research, 59(1), 99–106.
- Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., & Semenza, G. L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613. https://doi.org/10.1128/mcb.16.9.4604
- Gonzalez-King, H., Garcia, N. A., Ontoria-Oviedo, I., Ciria, M., Montero, J. A., & Sepulveda, P. (2017). Hypoxia inducible factor-1alpha potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells, 35(7), 1747–1759. https://doi.org/10.1002/stem.2618
- Gunter, J., Wolint, P., Bopp, A., Steiger, J., Cambria, E., Hoerstrup, S. P., & Emmert, M. Y. (2016). Microtissues in cardiovascular medicine: Regenerative potential based on a 3D microenvironment. Stem Cells International, 2016, 9098523. https://doi.org/10.1155/2016/9098523
10.1155/2016/9098523 Google Scholar
- Heusch, G. (2016). Myocardial ischemia: Lack of coronary blood flow or myocardial oxygen supply/demand imbalance? Circulation Research, 119(2), 194–196. https://doi.org/10.1161/CIRCRESAHA.116.308925
- Hirt, M. N., Hansen, A., & Eschenhagen, T. (2014). Cardiac tissue engineering: State of the art. Circulation Research, 114(2), 354–367. https://doi.org/10.1161/CIRCRESAHA.114.300522
- Hoff, P. M., Wolff, R. A., Bogaard, K., Waldrum, S., & Abbruzzese, J. L. (2006). A Phase I study of escalating doses of the tyrosine kinase inhibitor semaxanib (SU5416) in combination with irinotecan in patients with advanced colorectal carcinoma. Japanese Journal of Clinical Oncology, 36(2), 100–103. https://doi.org/10.1093/jjco/hyi229
- Hyvarinen, J., Hassinen, I. E., Sormunen, R., Maki, J. M., Kivirikko, K. I., Koivunen, P., & Myllyharju, J. (2010). Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. Journal of Biological Chemistry, 285(18), 13646–13657. https://doi.org/10.1074/jbc.M109.084855
- Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., … Kaelin, W. G., Jr (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292(5516), 464–468. https://doi.org/10.1126/science.1059817
- Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., … Ratcliffe, P. J. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468–472. https://doi.org/10.1126/science.1059796
- Jain, R. K. (2003). Molecular regulation of vessel maturation. Nature Medicine, 9(6), 685–693. https://doi.org/10.1038/nm0603-685
- Kim, C., Majdi, M., Xia, P., Wei, K. A., Talantova, M., Spiering, S., … Chen, H. S. (2010). Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells and Development, 19(6), 783–795. https://doi.org/10.1089/scd.2009.0349
- Kreutziger, K. L., Muskheli, V., Johnson, P., Braun, K., Wight, T. N., & Murry, C. E. (2011). Developing vasculature and stroma in engineered human myocardium. Tissue Engineering Part A, 17(9–10), 1219–1228. https://doi.org/10.1089/ten.TEA.2010.0557
- Ladoux, A., & Frelin, C. (1997). Cardiac expressions of HIF-1 alpha and HLF/EPAS, two basic loop helix/PAS domain transcription factors involved in adaptative responses to hypoxic stresses. Biochemical and Biophysical Research Communications, 240(3), 552–556. https://doi.org/10.1006/bbrc.1997.7708
- Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., … Murry, C. E. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024. https://doi.org/10.1038/nbt1327
- Laflamme, M. A., & Murry, C. E. (2005). Regenerating the heart. Nature Biotechnology, 23(7), 845–856. https://doi.org/10.1038/nbt1117
- Levent, E., Noack, C., Zelarayan, L. C., Katschinski, D. M., Zimmermann, W. H., & Tiburcy, M. (2020). Inhibition of prolyl-hydroxylase domain enzymes protects from Reoxygenation injury in engineered human myocardium. Circulation, 142(17), 1694–1696. https://doi.org/10.1161/CIRCULATIONAHA.119.044471
- Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., … Palecek, S. P. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of National Academy of Sciences U S A, 109(27), E1848–E1857. https://doi.org/10.1073/pnas.1200250109
- Liu, Y. W., Chen, B., Yang, X., Fugate, J. A., Kalucki, F. A., Futakuchi-Tsuchida, A., … Murry, C. E. (2018). Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nature Biotechnology, 36(7), 597–605. https://doi.org/10.1038/nbt.4162
- Moore, M., Moore, R., & McFetridge, P. S. (2013). Directed oxygen gradients initiate a robust early remodeling response in engineered vascular grafts. Tissue Engineering Part A, 19(17–18), 2005–2013. https://doi.org/10.1089/ten.TEA.2012.0592
- Ong, S. G., & Hausenloy, D. J. (2012). Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacology & Therapeutics, 136(1), 69–81. https://doi.org/10.1016/j.pharmthera.2012.07.005
- Piera-Velazquez, S., & Jimenez, S. A. (2012). Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases. Fibrogenesis & Tissue Repair, 5(Suppl 1), S7. https://doi.org/10.1186/1755-1536-5-S1-S7
- Prowse, A. B., Timmins, N. E., Yau, T. M., Li, R. K., Weisel, R. D., Keller, G., & Zandstra, P. W. (2014). Transforming the promise of pluripotent stem cell-derived cardiomyocytes to a therapy: Challenges and solutions for clinical trials. Canadian Journal of Cardiology, 30(11), 1335–1349. https://doi.org/10.1016/j.cjca.2014.08.005
- Rey, S., & Semenza, G. L. (2010). Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovascular Research, 86(2), 236–242. https://doi.org/10.1093/cvr/cvq045
- Richards, D. J., Coyle, R. C., Tan, Y., Jia, J., Wong, K., Toomer, K., … Mei, Y. (2017). Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials, 142, 112–123. https://doi.org/10.1016/j.biomaterials.2017.07.021
- Rivron, N. C., Raiss, C. C., Liu, J., Nandakumar, A., Sticht, C., Gretz, N., … van Blitterswijk, C. A. (2012). Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation. Proceedings of National Academy of Sciences U S A, 109(12), 4413–4418. https://doi.org/10.1073/pnas.1117627109
- Robey, T. E., Saiget, M. K., Reinecke, H., & Murry, C. E. (2008). Systems approaches to preventing transplanted cell death in cardiac repair. Journal of Molecular and Cellular Cardiology, 45(4), 567–581. https://doi.org/10.1016/j.yjmcc.2008.03.009
- Schaefer, J. A., Guzman, P. A., Riemenschneider, S. B., Kamp, T. J., & Tranquillo, R. T. (2018). A cardiac patch from aligned microvessel and cardiomyocyte patches. Journal of Tissue Engineering Regenerative Medicine, 12(2), 546–556. https://doi.org/10.1002/term.2568
- Semenza, G. L., Nejfelt, M. K., Chi, S. M., & Antonarakis, S. E. (1991). Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proceedings of National Academy of Sciences U S A, 88(13), 5680–5684. https://doi.org/10.1073/pnas.88.13.5680
- Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., … Laflamme, M. A. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325. https://doi.org/10.1038/nature11317
- Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., … Ikeda, U. (2016). Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature, 538(7625), 388–391. https://doi.org/10.1038/nature19815
- Skylar-Scott, M. A., Uzel, S. G. M., Nam, L. L., Ahrens, J. H., Truby, R. L., Damaraju, S., & Lewis, J. A. (2019). Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Science Advances, 5(9), eaaw2459. https://doi.org/10.1126/sciadv.aaw2459
- Speer, R. E., Karuppagounder, S. S., Basso, M., Sleiman, S. F., Kumar, A., Brand, D., … Ratan, R. R. (2013). Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators: From ferroptosis to stroke. Free Radical Biology and Medicine, 62, 26–36. https://doi.org/10.1016/j.freeradbiomed.2013.01.026
- Tulloch, N. L., Muskheli, V., Razumova, M. V., Korte, F. S., Regnier, M., Hauch, K. D., … Murry, C. E. (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circulation Research, 109(1), 47–59. https://doi.org/10.1161/CIRCRESAHA.110.237206
- Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., & Radisic, M. (2010). Challenges in cardiac tissue engineering. Tissue Engineering Part B Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.TEB.2009.0352
- Wang, J., Chen, A., Lieu, D. K., Karakikes, I., Chen, G., Keung, W., … Li, R. A. (2013). Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias. Biomaterials, 34(35), 8878–8886. https://doi.org/10.1016/j.biomaterials.2013.07.039
- Watson, C. J., Collier, P., Tea, I., Neary, R., Watson, J. A., Robinson, C., … Baugh, J. A. (2014). Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Human Molecular Genetics, 23(8), 2176–2188. https://doi.org/10.1093/hmg/ddt614
- Weinberger, F., Breckwoldt, K., Pecha, S., Kelly, A., Geertz, B., Starbatty, J., … Eschenhagen, T. (2016). Cardiac repair in Guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Science Translational Medicine, 8(363), 363ra148. https://doi.org/10.1126/scitranslmed.aaf8781
- Yeh, T. L., Leissing, T. M., Abboud, M. I., Thinnes, C. C., Atasoylu, O., Holt-Martyn, J. P., … Schofield, C. J. (2017). Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chemical Science, 8(11), 7651–7668. https://doi.org/10.1039/c7sc02103h
- Zhu, P., Huang, L., Ge, X., Yan, F., Wu, R., & Ao, Q. (2006). Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. International Journal of Experimental Pathology, 87(6), 463–474. https://doi.org/10.1111/j.1365-2613.2006.00503.x