A clinical-grade acellular matrix for esophageal replacement
Lousineh Arakelian
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorClémentine Caille
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorLionel Faivre
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorLaurent Corté
MAT—Centre des Matériaux, MINES ParisTech, PSL Research University, CNRS UMR 7633, France
Laboratoire Matière Molle et Chimie, ESPCI Paris, PSL Research University, CNRS UMR 7167, Paris, France
Search for more papers by this authorPatrick Bruneval
Department of Pathology, Georges Pompidou European Hospital, AP-HP, Paris, France
Search for more papers by this authorSara Shamdani
Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
Search for more papers by this authorCamille Flageollet
Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
Search for more papers by this authorPatricia Albanese
Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
Search for more papers by this authorThomas Domet
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorMohamed Jarraya
Banque des Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
Search for more papers by this authorNiclas Setterblad
Technological Core facility of the Hematology Institute, Université Paris-Diderot and Inserm, Hôpital Saint-Louis, Paris, France
Search for more papers by this authorSabrina Kellouche
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, France
Search for more papers by this authorJérôme Larghero
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorCorresponding Author
Pierre Cattan
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Department of Digestive Surgery, St-Louis Hospital—Paris 7 University, Paris, France
Correspondence
Valérie Vanneaux, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP. Paris, France.
Email: [email protected]
Pierre Cattan, Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis. Paris, France.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Valérie Vanneaux
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Correspondence
Valérie Vanneaux, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP. Paris, France.
Email: [email protected]
Pierre Cattan, Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis. Paris, France.
Email: [email protected]
Search for more papers by this authorLousineh Arakelian
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorClémentine Caille
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorLionel Faivre
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorLaurent Corté
MAT—Centre des Matériaux, MINES ParisTech, PSL Research University, CNRS UMR 7633, France
Laboratoire Matière Molle et Chimie, ESPCI Paris, PSL Research University, CNRS UMR 7167, Paris, France
Search for more papers by this authorPatrick Bruneval
Department of Pathology, Georges Pompidou European Hospital, AP-HP, Paris, France
Search for more papers by this authorSara Shamdani
Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
Search for more papers by this authorCamille Flageollet
Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
Search for more papers by this authorPatricia Albanese
Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
Search for more papers by this authorThomas Domet
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorMohamed Jarraya
Banque des Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
Search for more papers by this authorNiclas Setterblad
Technological Core facility of the Hematology Institute, Université Paris-Diderot and Inserm, Hôpital Saint-Louis, Paris, France
Search for more papers by this authorSabrina Kellouche
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, France
Search for more papers by this authorJérôme Larghero
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Search for more papers by this authorCorresponding Author
Pierre Cattan
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Department of Digestive Surgery, St-Louis Hospital—Paris 7 University, Paris, France
Correspondence
Valérie Vanneaux, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP. Paris, France.
Email: [email protected]
Pierre Cattan, Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis. Paris, France.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Valérie Vanneaux
Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
Correspondence
Valérie Vanneaux, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP. Paris, France.
Email: [email protected]
Pierre Cattan, Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis. Paris, France.
Email: [email protected]
Search for more papers by this authorAbstract
In pathologies of the esophagus such as esophageal atresia, cancers, and caustic injuries, methods for full thickness esophageal replacement require the sacrifice of healthy intra-abdominal organs such as the stomach and the colon and are associated with high morbidity, mortality, and poor functional results. To overcome these problems, tissue engineering methods are developed to create a substitute with scaffolds and cells. The aim of this study was to develop a simple and safe decellularization process in order to obtain a clinical grade esophageal extracellular matrix. Following the decontamination step, porcine esophagi were decellularized in a bioreactor with sodium dodecyl sulfate and ethylenediaminetetraacetic acid for 3 days and were rinsed with deionized water. DNA was eliminated by a 3-hr DNase treatment. To remove any residual detergent, the matrix was then incubated with an absorbing resin. The resulting porcine esophageal matrix was characterized by the assessment of the efficiency of the decellularization process (DNA quantification), evaluation of sterility and absence of cytotoxicity, and its composition and biomechanical properties, as well as the possibility to be reseeded with mesenchymal stem cells. Complete decellularization with the preservation of the general structure, composition, and biomechanical properties of the native esophageal matrix was obtained. Sterility was maintained throughout the process, and the matrix showed no cytotoxicity. The resulting matrix met clinical grade criteria and was successfully reseeded with mesenchymal stem cells..
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES
- Agrawal, V., Tottey, S., Johnson, S. A., Freund, J. M., Siu, B. F., & Badylak, S. F. (2011). Recruitment of Progenitor Cells by an Extracellular Matrix Cryptic Peptide in a Mouse Model of Digit Amputation. Tissue Engineering Part A, 17(19-20), 2435–2443. https://doi.org/10.1089/ten.tea.2011.0036
- Arakelian, L., Kanai, N., Dua, K., & Cattan, P. (2018). Esophageal tissue engineering: From bench to bedside. Annals of the New York Academy of Sciences, 1434(1), 156–163. https://doi.org/10.1111/nyas.13951
- Badylak, S. F., Hoppo, T., Nieponice, A., Gilbert, T. W., Davison, J. M., & Jobe, B. A. (2011). Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: A regenerative medicine approach with a biologic scaffold. Tissue Engineering Part A, 17(11–12), 1643–1650. https://doi.org/10.1089/ten.tea.2010.0739
- Badylak, S. F., Taylor, D., & Uygun, K. (2010). Whole organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annual Review of Biomedical Engineering, 13, 27–53. https://doi.org/10.1146/annurev-bioeng-071910-124743
- Catry, J., Luong-Nguyen, M., Arakelian, L., Poghosyan, T., Bruneval, P., Domet, T., … Cattan, P. (2017). Circumferential esophageal replacement by a tissue-engineered substitute using mesenchymal stem cells. Cell Transplantation, 26(12), 1831–1839. https://doi.org/10.1177/0963689717741498
- Cheung, D. Y., Duan, B., & Butcher, J. T. (2016). Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opinion on Biological Therapy, 15(8), 1155–1172. https://doi.org/10.1517/14712598.2015.1051527
- Chirica, M., Veyrie, N., Munoz-Bongrand, N., Zohar, S., Halimi, B., Celerier, M., … Sarfati, E. (2010). Late morbidity after colon interposition for corrosive esophageal injury: Risk factors, management, and outcome. A 20-years experience. Annals of Surgery, 252(2), 271–280. https://doi.org/10.1097/SLA.0b013e3181e8fd40
- Cidadao, A. J. (1989). Interactions between fibronectin, glycosaminoglycans and native collagen fibrils: An EM study in artificial three-dimensional extracellular matrices. European Journal of Cell Biology, 48(2), 303–312.
- Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32, 3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057
- Delgado, L. M., Bayon, Y., Pandit, A., & Zeugolis, D. I. (2015). To cross-link or not to cross-link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices. Tissue Engineering Part B: Reviews., 21, 298–313. https://doi.org/10.1089/ten.teb.2014.0290
- Doi, R., Tsuchiya, T., Mitsutake, N., & Nishimura, S. (2017). Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells. Scientific Reports, (December 2016), 7(1), 1–15. https://doi.org/10.1038/s41598-017-09115-2
- Elmashhady, H. H., Kraemer, B. A., Patel, K. H., Sell, S. A., & Garg, K. (2017). Decellularized extracellular matrices for tissue engineering applications. Electrospinning, 1(1), 87–99. https://doi.org/10.1515/esp-2017-0005
10.1515/esp?2017?0005 Google Scholar
- Faulk, D. M., Wildemann, J. D., & Badylak, S. F. (2015). Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. Journal of Clinical and Experimental Hepatology, 5(1), 69–80. https://doi.org/10.1016/j.jceh.2014.03.043
- Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta - General Subjects, 1840(8), 2506–2519. https://doi.org/10.1016/j.bbagen.2014.01.010
- Gaucher, S., Khaznadar, Z., Gourevitch, J. C., & Jarraya, M. (2016). Skin donors and human skin allografts: Evaluation of an 11-year practice and discard in a referral tissue bank. Cell and Tissue Banking, 17, 11–19. https://doi.org/10.1007/s10561-015-9528-3
- Grant, W. F., & Salamone, M. F. (1994). Comparative mutagenicity of chemicals selected for test in the International Program on Chemical Safety's collaborative study on plant systems for the detection of environmental mutagens. Mutation Research, 310, 187–209. https://doi.org/10.1016/0027-5107(94)90113-9
- Huynh, M. B., Morin, C., Carpentier, G., Garcia-Filipe, S., Talhas-Perret, S., Barbier-Chassefière, V., … Papy-Garcia, D. (2012). Age-related changes in rat myocardium involve altered capacities of glycosaminoglycans to potentiate growth factor functions and heparan sulfate-altered sulfation. Journal of Biological Chemistry, 287(14), 11363–11373. https://doi.org/10.1074/jbc.M111.335901
- Ishikane, S., Hosoda, H., Yamahara, K., Akitake, Y., Kyoungsook, J., Mishima, K., … Ikeda, T. (2013). Allogeneic transplantation of fetal membrane-derived mesenchymal stem cell sheets increases neovascularization and improves cardiac function after myocardial infarction in rats. Transplantation, 96(8), 697–706. https://doi.org/10.1097/TP.0b013e31829f753d
- Khan, A. A., Vishwakarma, S. K., Bardia, A., & Venkateshwarulu, J. (2014). Repopulation of decellularized whole organ scaffold using stem cells: An emerging technology for the development of neo-organ. Journal of Artificial Organs, 17(4), 291–300. https://doi.org/10.1007/s10047-014-0780-2
- Kjellén, L., & Lindahl, U. (2018). Specificity of glycosaminoglycan–protein interactions. Current Opinion in Structural Biology, 50, 101–108. https://doi.org/10.1016/j.sbi.2017.12.011
- Kuo, B., & Urma, D. (2006). E sophagus—Anatomy and development. GI Motility Online, 1–20. https://doi.org/10.1038/gimo6
10.1038/gimo6 Google Scholar
- Liu, C. K., Tan, X. Y., Luo, J. C., Liu, H. W., Hu, M., & Yue, W. (2014). Reconstruction of beagle hemi-mandibular defects with allogenic mandibular scaffolds and autologous mesenchymal stem cells. PLoS ONE, 9(8), e105733. https://doi.org/10.1371/journal.pone.0105733
- Luc, G., Charles, G., Gronnier, C., Cabau, M., Kalisky, C., Meulle, M., … Collet, D. (2018). Biomaterials decellularized and matured esophageal scaffold for circumferential esophagus replacement: Proof of concept in a pig model. Biomaterials, 175, 1–18. https://doi.org/10.1016/j.biomaterials.2018.05.023
- Ma, B., Wang, X., Wu, C., & Chang, J. (2014). Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regenerative Biomaterials, 1(1), 81–89. https://doi.org/10.1093/rb/rbu009
- Matuska, A. M., Mcfetridge, P. S., & Family, J. C. P. (2016). The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103(2), 1–22. https://doi.org/10.1002/jbm.b.33213.The
- Ohki, T., Yamato, M., Ota, M., Takagi, R., Murakami, D., Kondo, M., … Yamamoto, M. (2012). Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology, 143(3), 582–588.e2. https://doi.org/10.1053/j.gastro.2012.04.050
- Ozeki, M., Narita, Y., Kagami, H., Ohmiya, N., Itoh, A., Hirooka, Y., … Goto, H. (2006). Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. Journal of Biomedical Materials Research - Part A, 79A, 771–778. https://doi.org/10.1002/jbm.a.30885
- Parenteau-Bareil, R., Gauvin, R., & Berthod, F. (2010). Collagen-based biomaterials for tissue engineering applications. Materials, 3(3), 1863–1887. https://doi.org/10.3390/ma3031863
- Philp, D., Chen, S. S., Fitzgerald, W., Orenstein, J., Margolis, L., & Kleinman, K. (2005). Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells, Feb, 23(2), 288–296. https://doi.org/10.1634/stemcells.2002-0109
- Poghosyan, T., Catry, J., Luong-Nguyen, M., Bruneval, P., Domet, T., Arakelian, L., … Cattan, P. (2016). Esophageal tissue engineering: Current status and perspectives. Journal of Visceral Surgery, 153, 21–29. https://doi.org/10.1016/j.jviscsurg.2015.11.009
- Poghosyan, T., Gaujoux, S., Chirica, M., Munoz-Bongrand, N., Sarfati, E., & Cattan, P. (2011). Functional disorders and quality of life after esophagectomy and gastric tube reconstruction for cancer. Journal of Visceral Surgery, 148, e327–e335. Retrieved from http://ac.els-cdn.com.gate2.inist.fr/S1878788611001093/1-s2.0-S1878788611001093-main.pdf?_tid=102588d6-8322-11e7-8a8b-00000aacb35f&acdnat=1502956978_4c9f951fb448fd427801b6ae238e4cf9
- Poghosyan, T., Sfeir, R., Michaud, L., Bruneval, P., Domet, T., Vanneaux, V., … Cattan, P. (2015). Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: An experimental study in minipigs. Surgery (United States), 158(1), 266–277. https://doi.org/10.1016/j.surg.2015.01.020
- Saxena, A. K. (2014). Esophagus tissue engineering: Designing and crafting the components for the hybrid construct approach. European Journal of Pediatric Surgery, 24, 246–262. https://doi.org/10.1055/s-0034-1382261
- Scheffler, S. U., Cmd, J. G., Cmd, J. K., & Przybilla, D. (2008). Remodeling of ACL allografts is Inhibited by peracetic acid sterilization. Clinical Orthopaedics and Related Research, 466, 1810–1818. https://doi.org/10.1007/s11999-008-0288-2
- Sekino, T., Murata, K., & Saito, Y. (1979). Acidic glycosaminoglycans in human esophagus tissue. The Tohoku Journal of Experimental Medicine, 127, 273–280.
- Sharma, A. K., Bury, M. I., Marks, A. J., Fuller, N. J., Meisner, J. W., Tapaskar, N., … Cheng, E. Y. (2011). A Nonhuman primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells. Stem Cells, 29(2), 241–250. https://doi.org/10.1002/stem.568
- Totonelli, G., Maghsoudlou, P., Georgiades, F., Garriboli, M., Koshy, K., Turmaine, M., … De Coppi, P. (2013). Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration. Pediatric Surgery International, 29, 87–95. https://doi.org/10.1007/s00383-012-3194-3
- Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–736. https://doi.org/10.1038/nri2395
- Ullah, I., Baregundi Subbarao, R., & Rho, G.-J. (2015). Human mesenchymal stem cells—Current trends and future prospective. Bioscience Reports, 35(2), e00191. https://doi.org/10.1042/BSR20150025
- Urbani, L., Camilli, C., Phylactopoulos, D., Crowley, C., Natarajan, D., Scottoni, F., … De Coppi, P. (2018). Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nature Communications, 9, 1–16. https://doi.org/10.1038/s41467-018-06385-w
- White, L. J., Taylor, A. J., Faulk, D. M., Keane, T. J., Saldin, L. T., Reing, J. E., … Stephen, F. (2017). The impact of detergents on the tissue decellularization process: A ToF-SIMS study. Acta Biomaterialia, 207–219, 207–219. https://doi.org/10.1016/j.actbio.2016.12.033
- Yamamoto, Y., Nakamura, T., Shimizu, Y., Matsumoto, K., Takimoto, Y., Kiyotani, T., … Tamura, N. (1999). Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube. The Journal of Thoracic and Cardiovascular Surgery, 118(2), 276–286. https://doi.org/10.1016/S0022-5223(99)70218-7