Impact of ultraviolet radiation on dermal and epidermal DNA damage in a human pigmented bilayered skin substitute
Benjamin Goyer
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorUlysse Pereira
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorBrice Magne
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorDanielle Larouche
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorSélia Kearns-Turcotte
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorPatrick J. Rochette
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département d'ophtalmologie et d'oto-rhino-laryngologie – chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorLudovic Martin
Service de Dermatologie, CHU d'Angers, et Institut MitoVasc (UMR INSERM 1083, UMR CNRS 6015), Université d'Angers, Angers, France
Search for more papers by this authorCorresponding Author
Lucie Germain
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Correspondence
Prof Lucie Germain, Loex, Aile-R, CHU de Québec, Université Laval, 1401, 18e rue, Québec G1J 1Z4, QC, Canada.
Email: [email protected]
Search for more papers by this authorBenjamin Goyer
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorUlysse Pereira
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorBrice Magne
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorDanielle Larouche
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorSélia Kearns-Turcotte
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorPatrick J. Rochette
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département d'ophtalmologie et d'oto-rhino-laryngologie – chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, QC, Canada
Search for more papers by this authorLudovic Martin
Service de Dermatologie, CHU d'Angers, et Institut MitoVasc (UMR INSERM 1083, UMR CNRS 6015), Université d'Angers, Angers, France
Search for more papers by this authorCorresponding Author
Lucie Germain
Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
Correspondence
Prof Lucie Germain, Loex, Aile-R, CHU de Québec, Université Laval, 1401, 18e rue, Québec G1J 1Z4, QC, Canada.
Email: [email protected]
Search for more papers by this authorAbstract
Our laboratory has developed a scaffold-free cell-based method of tissue engineering to produce bilayered tissue-engineered skin substitutes (TESs) from epidermal and dermal cells. However, TES pigmentation is absent or heterogeneous after grafting, due to a suboptimal number of melanocytes in culture. Our objectives were to produce TESs with a sufficient quantity of melanocytes from different pigmentation phototypes (light and dark) to achieve a homogeneous color and to evaluate whether the resulting pigmentation was photoprotective against ultraviolet radiation (UVR)-induced DNA damage in the dermis and the epidermis. TESs were cultured using different concentrations of melanocytes (100, 200, and 1,500 melanocytes/mm2), and pigmentation was evaluated in vitro and after grafting onto an athymic mouse excisional model. Dermal and epidermal DNA damage was next studied, exposing pigmented TESs to 13 and 32.5 J/cm2 UVR in vitro. We observed that melanocyte cell density increased with culture time until reaching a plateau corresponding to the cell distribution of native skin. Pigmentation of melanocyte-containing TESs was similar to donor skin, with visible melanin transfer from melanocytes to keratinocytes. The amount of melanin in TESs was inversely correlated to the UVR-induced formation of cyclobutane pyrimidine dimer in dermal fibroblasts and keratinocytes. Our results indicate that the pigmentation conferred by the addition of melanocytes in TESs protects against UVR-induced DNA damage. Therefore, autologous pigmented TESs could ensure photoprotection after grafting.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
- Alaluf, S., Heath, A., Carter, N., Atkins, D., Mahalingam, H., Barrett, K., … Smit, N. (2001). Variation in melanin content and composition in type V and VI photoexposed and photoprotected human skin: The dominant role of DHI. Pigment Cell Research, 14(5), 337–347. https://doi.org/10.1034/j.1600-0749.2001.140505.x
- Balafa, C., Smith-Thomas, L., Phillips, J., Moustafa, M., George, E., Blount, M., … MacNeil, S. (2005). Dopa oxidase activity in the hair, skin and ocular melanocytes is increased in the presence of stressed fibroblasts. Experimental Dermatology, 14(5), 363–372. https://doi.org/10.1111/j.0906-6705.2005.00287.x
- Biedermann, T., Bottcher-Haberzeth, S., Klar, A. S., Widmer, D. S., Pontiggia, L., Weber, A. D., … Reichmann, E. (2015). The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts. Tissue Engineering. Part A, 21(5-6), 960–969. https://doi.org/10.1089/ten.tea.2014.0327
- Black, A. F., Berthod, F., L'Heureux, N., Germain, L., & Auger, F. A. (1998). In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. The FASEB Journal, 12(13), 1331–1340. https://doi.org/10.1096/fasebj.12.13.1331
- Blumberg, P. M. (1988). Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Research, 48(1), 1–8.
- Bottcher-Haberzeth, S., Biedermann, T., Klar, A. S., Pontiggia, L., Rac, J., Nadal, D., … Meuli, M. (2014). Tissue engineering of skin: Human tonsil-derived mesenchymal cells can function as dermal fibroblasts. Pediatric Surgery International, 30(2), 213–222. https://doi.org/10.1007/s00383-013-3454-x
- Bottcher-Haberzeth, S., Biedermann, T., Klar, A. S., Widmer, D. S., Neuhaus, K., Schiestl, C., … Reichmann, E. (2015). Characterization of pigmented dermo-epidermal skin substitutes in a long-term in vivo assay. Experimental Dermatology, 24(1), 16–21. https://doi.org/10.1111/exd.12570
- Bottcher-Haberzeth, S., Biedermann, T., Pontiggia, L., Braziulis, E., Schiestl, C., Hendriks, B., … Reichmann, E. (2013). Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes. The Journal of Investigative Dermatology, 133(2), 316–324. https://doi.org/10.1038/jid.2012.290
- Bottcher-Haberzeth, S., Klar, A. S., Biedermann, T., Schiestl, C., Meuli-Simmen, C., Reichmann, E., & Meuli, M. (2013). “Trooping the color”: Restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatric Surgery International, 29(3), 239–247. https://doi.org/10.1007/s00383-012-3217-0
- Boyce, S. T., Lloyd, C. M., Kleiner, M. C., Swope, V. B., Abdel-Malek, Z., & Supp, D. M. (2017). Restoration of cutaneous pigmentation by transplantation to mice of isogeneic human melanocytes in dermal-epidermal engineered skin substitutes. Pigment Cell & Melanoma Research, 30(6), 531–540. https://doi.org/10.1111/pcmr.12609
- Boyce, S. T., Simpson, P. S., Rieman, M. T., Warner, P. M., Yakuboff, K. P., Bailey, J. K., … Kagan, R. J. (2017). Randomized, paired-site comparison of autologous engineered skin substitutes and split-thickness skin graft for closure of extensive, full-thickness burns. Journal of Burn Care & Research, 38(2), 61–70. https://doi.org/10.1097/BCR.0000000000000401
- Brash, D. E. (2015). UV signature mutations. Photochemistry and Photobiology, 91(1), 15–26. https://doi.org/10.1111/php.12377
- Brenner, M., & Hearing, V. J. (2008). The protective role of melanin against UV damage in human skin. Photochemistry and Photobiology, 84(3), 539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x
- Buffey, J. A., Messenger, A. G., Taylor, M., Ashcroft, A. T., Westgate, G. E., & Neil, S. M. (1994). Extracellular matrix derived from hair and skin fibroblasts stimulates human skin melanocyte tyrosinase activity. The British Journal of Dermatology, 131(6), 836–842. https://doi.org/10.1111/j.1365-2133.1994.tb08586.x
- Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12), 1816–1841. https://doi.org/10.1039/C7PP00395A
- Cario-Andre, M., Pain, C., Gauthier, Y., Casoli, V., & Taieb, A. (2006). In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation. Pigment Cell Research, 19(5), 434–442. https://doi.org/10.1111/j.1600-0749.2006.00326.x
- Coelho, S. G., Zmudzka, B. Z., Yin, L., Miller, S. A., Yamaguchi, Y., Tadokoro, T., … Beer, J. Z. (2013). Non-invasive diffuse reflectance measurements of cutaneous melanin content can predict human sensitivity to ultraviolet radiation. Experimental Dermatology, 22(4), 266–271. https://doi.org/10.1111/exd.12116
- Duval, C., Regnier, M., & Schmidt, R. (2001). Distinct melanogenic response of human melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed epidermis, to UV exposure. Pigment Cell Research, 14(5), 348–355. https://doi.org/10.1034/j.1600-0749.2001.140506.x
- Duval, C., Smit, N. P., Kolb, A. M., Régnier, M., Pavel, S., & Schmidt, R. (2002). Keratinocytes control the pheo/eumelanin ratio in cultured normal human melanocytes. Pigment Cell Research, 15(6), 440–446. https://doi.org/10.1034/j.1600-0749.2002.02055.x
- Eisinger, M., & Marko, O. (1982). Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proceedings of the National Academy of Sciences of the United States of America, 79(6), 2018–2022. https://doi.org/10.1073/pnas.79.6.2018
- Feehan, R. P., & Shantz, L. M. (2016). Molecular signaling cascades involved in nonmelanoma skin carcinogenesis. The Biochemical Journal, 473(19), 2973–2994. https://doi.org/10.1042/BCJ20160471
- Fernandez, T. L., Van Lonkhuyzen, D. R., Dawson, R. A., Kimlin, M. G., & Upton, Z. (2014). In vitro investigations on the effect of dermal fibroblasts on keratinocyte responses to ultraviolet B radiation. Photochemistry and Photobiology, 90(6), 1332–1339. https://doi.org/10.1111/php.12317
- Garcia, M., Llames, S., Garcia, E., Meana, A., Cuadrado, N., Recasens, M., … Del Rio, M. (2010). In vivo assessment of acute UVB responses in normal and xeroderma pigmentosum (XP-C) skin-humanized mouse models. The American Journal of Pathology, 177(2), 865–872. https://doi.org/10.2353/ajpath.2010.091096
- Germain, L., Larouche, D., Nedelec, B., Perreault, I., Duranceau, L., Bortoluzzi, P., … Bussière, A. (2018). Autologous bilayered self-assembled skin substitutes (SASSs) as permanent grafts: A case series of 14 severely burned patients indicating clinical effectiveness. European Cells & Materials, 36, 128–141. https://doi.org/10.22203/eCM.v036a10
- Gomez, C., Galan, J. M., Torrero, V., Ferreiro, I., Pérez, D., Palao, R., … Holguín, P. (2011). Use of an autologous bioengineered composite skin in extensive burns: Clinical and functional outcomes. A multicentric study. Burns, 37(4), 580–589. https://doi.org/10.1016/j.burns.2010.10.005
- Goyer, B., Larouche, D., Dong Hyun, K., Veillette, N., Pruneau, V., Bernier, V., … Germain, L. (2019). Immune tolerance of tissue-engineered skin produced with allogeneic or xenogeneic fibroblasts and syngeneic keratinocytes grafted on mice. Acta Biomaterialia, 90, 192–204.
- Harriger, M. D., Warden, G. D., Greenhalgh, D. G., Kagan, R. J., & Boyce, S. T. (1995). Pigmentation and microanatomy of skin regenerated from composite grafts of cultured cells and biopolymers applied to full-thickness burn wounds. Transplantation, 59(5), 702–707. https://doi.org/10.1097/00007890-199503150-00011
- Hearing, V. J. (1999). Biochemical control of melanogenesis and melanosomal organization. The Journal of Investigative Dermatology. Symposium Proceedings, 4(1), 24–28. https://doi.org/10.1038/sj.jidsp.5640176
- Hennessy, A., Oh, C., Diffey, B., Wakamatsu, K., Ito, S., & Rees, J. (2005). Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation. Pigment Cell Research, 18(3), 220–223. https://doi.org/10.1111/j.1600-0749.2005.00233.x
- Hirobe, T. (2005). Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Research, 18(1), 2–12. https://doi.org/10.1111/j.1600-0749.2004.00198.x
- Khan, A. Q., Travers, J. B., & Kemp, M. G. (2018). Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environmental and Molecular Mutagenesis, 59, 438–460. https://doi.org/10.1002/em.22176
- Klar, A. S., Biedermann, T., Michalak, K., Michalczyk, T., Meuli-Simmen, C., Scherberich, A., … Reichmann, E. (2017). Human adipose mesenchymal cells inhibit melanocyte differentiation and the pigmentation of human skin via increased expression of TGF-beta1. The Journal of Investigative Dermatology, 137(12), 2560–2569. https://doi.org/10.1016/j.jid.2017.06.027
- Krauthammer, M., Kong, Y., Ha, B. H., Evans, P., Bacchiocchi, A., McCusker, J. P., … Halaban, R. (2012). Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics, 44(9), 1006–1014. https://doi.org/10.1038/ng.2359
- Kuluncsics, Z., Perdiz, D., Brulay, E., Muel, B., & Sage, E. (1999). Wavelength dependence of ultraviolet-induced DNA damage distribution: Involvement of direct or indirect mechanisms and possible artefacts. Journal of Photochemistry and Photobiology. B, 49(1), 71–80. https://doi.org/10.1016/S1011-1344(99)00034-2
- Lee, D. Y., Lee, J. H., Lee, E. S., Cho, K. H., & Yang, J. M. (2003). Fibroblasts play a stimulatory role in keratinocyte proliferation but an inhibitory role in melanocyte growth and pigmentation in a skin equivalent system from skin type IV. Archives of Dermatological Research, 294(10-11), 444–446. https://doi.org/10.1007/s00403-002-0359-2
- Marrot, L., Planel, E., Ginestet, A. C., Belaïdi, J. P., Jones, C., & Meunier, J. R. (2010). In vitro tools for photobiological testing: Molecular responses to simulated solar UV of keratinocytes growing as monolayers or as part of reconstructed skin. Photochemical & Photobiological Sciences, 9(4), 448–458. https://doi.org/10.1039/b9pp00145j
- McCloy, R. A., Rogers, S., Caldon, C. E., Lorca, T., Castro, A., & Burgess, A. (2014). Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle, 13(9), 1400–1412. https://doi.org/10.4161/cc.28401
- Medalie, D. A., Tompkins, R. G., & Morgan, J. R. (1998). Characterization of a composite tissue model that supports clonal growth of human melanocytes in vitro and in vivo. The Journal of Investigative Dermatology, 111(5), 810–816. https://doi.org/10.1046/j.1523-1747.1998.00368.x
- Michel, M., L'Heureux, N., Pouliot, R., Xu, W., Auger, F. A., & Germain, L. (1999). Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cellular & Developmental Biology. Animal, 35(6), 318–326. https://doi.org/10.1007/s11626-999-0081-x
- Mouret, S., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2008). Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin. DNA Repair (Amst), 7(5), 704–712. https://doi.org/10.1016/j.dnarep.2008.01.005
- Nakazawa, K., Nakazawa, H., Collombel, C., & Damour, O. (1995). Keratinocyte extracellular matrix-mediated regulation of normal human melanocyte functions. Pigment Cell Research, 8(1), 10–18. https://doi.org/10.1111/j.1600-0749.1995.tb00769.x
- Nakazawa, K., Nakazawa, H., Sahuc, F., Lepavec, A., Collombel, C., & Damour, O. (1997). Pigmented human skin equivalent: New method of reconstitution by grafting an epithelial sheet onto a non-contractile dermal equivalent. Pigment Cell Research, 10(6), 382–390. https://doi.org/10.1111/j.1600-0749.1997.tb00696.x
- Okazaki, M., Suzuki, Y., Yoshimura, K., & Harii, K. (2005). Construction of pigmented skin equivalent and its application to the study of congenital disorders of pigmentation. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 39(6), 339–343. https://doi.org/10.1080/02844310500300362
- Premi, S., Wallisch, S., Mano, C. M., Weiner, A. B., Bacchiocchi, A., Wakamatsu, K., … Brash, D. E. (2015). Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science, 347(6224), 842–847.
- Rheinwald, J., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell, 6, 331–344. https://doi.org/10.1016/S0092-8674(75)80001-8
- Rosdahl, I., & Rorsman, H. (1983). An estimate of the melanocyte mass in humans. The Journal of Investigative Dermatology, 81(3), 278–281. https://doi.org/10.1111/1523-1747.ep12518318
- Schmid, F. F., Groeber-Becker, F., Schwab, S., Thude, S., Goebeler, M., Walles, H., & Hansmann, J. (2018). A standardized method based on pigmented epidermal models evaluates sensitivity against UV-irradiation. ALTEX, 35(3), 390–396.
- Swope, V. B., Medrano, E. E., Smalara, D., & Abdel-Malek, Z. A. (1995). Long-term proliferation of human melanocytes is supported by the physiologic mitogens alpha-melanotropin, endothelin-1, and basic fibroblast growth factor. Experimental Cell Research, 217(2), 453–459. https://doi.org/10.1006/excr.1995.1109
- Swope, V. B., Supp, A. P., & Boyce, S. T. (2002). Regulation of cutaneous pigmentation by titration of human melanocytes in cultured skin substitutes grafted to athymic mice. Wound Repair and Regeneration, 10(6), 378–386. https://doi.org/10.1046/j.1524-475X.2002.10607.x
- Tadokoro, T., Kobayashi, N., Zmudzka, B. Z., Ito, S., Wakamatsu, K., Yamaguchi, Y., … Hearing, V. J. (2003). UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. The FASEB Journal, 17(9), 1177–1179. https://doi.org/10.1096/fj.02-0865fje
- Tadokoro, T., Yamaguchi, Y., Batzer, J., Coelho, S. G., Zmudzka, B. Z., Miller, S. A., … Hearing, V. J. (2005). Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation. The Journal of Investigative Dermatology, 124(6), 1326–1332. https://doi.org/10.1111/j.0022-202X.2005.23760.x
- Thong, H. Y., Jee, S. H., Sun, C. C., & Boissy, R. E. (2003). The patterns of melanosome distribution in keratinocytes of human skin as one determining factor of skin colour. The British Journal of Dermatology, 149(3), 498–505. https://doi.org/10.1046/j.1365-2133.2003.05473.x
- Young, A. R., Chadwick, C. A., Harrison, G. I., Nikaido, O., Ramsden, J., & Potten, C. S. (1998). The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema. The Journal of Investigative Dermatology, 111(6), 982–988. https://doi.org/10.1046/j.1523-1747.1998.00436.x
- Zinflou, C., & Rochette, P. J. (2019). Absorption of blue light by cigarette smoke components is highly toxic for retinal pigmented epithelial cells. Archives of Toxicology, 93(2), 453–465. https://doi.org/10.1007/s00204-018-2344-3