Proof of concept, design, and manufacture via 3-D printing of a mesh with bactericidal capacity: Behaviour in vitro and in vivo
Francisco José Calero Castro
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Search for more papers by this authorYaiza Yuste
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Search for more papers by this authorSheila Pereira
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Search for more papers by this authorMaría Dolores Garvín
TAR Group, Polytechnic College, University of Seville, Seville, Spain
Search for more papers by this authorM. Ángeles López García
Department of Pathological Anatomy, “Virgen del Rocío” University Hospital, CIBERONC, Seville, Spain
Search for more papers by this authorFrancisco Javier Padillo
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Search for more papers by this authorCorresponding Author
Fernando de la Portilla
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Correspondence
Fernando de la Portilla, Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain.
Email: [email protected]
Search for more papers by this authorFrancisco José Calero Castro
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Search for more papers by this authorYaiza Yuste
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Search for more papers by this authorSheila Pereira
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Search for more papers by this authorMaría Dolores Garvín
TAR Group, Polytechnic College, University of Seville, Seville, Spain
Search for more papers by this authorM. Ángeles López García
Department of Pathological Anatomy, “Virgen del Rocío” University Hospital, CIBERONC, Seville, Spain
Search for more papers by this authorFrancisco Javier Padillo
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Search for more papers by this authorCorresponding Author
Fernando de la Portilla
Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
Correspondence
Fernando de la Portilla, Institute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain.
Email: [email protected]
Search for more papers by this authorAbstract
Currently, hernia treatment involves implantation of a mesh prosthesis, usually made of polypropylene, and the primary complication is infection of the device, which leads to an exponential increase in morbidity. Three-dimensional printing offers a method of dealing with complications of this magnitude. Therefore, in this study, the bactericidal properties and effectiveness of three-dimensional-printed meshes with polycaprolactone (PCL) and gentamicin were evaluated in vitro in Escherichia coli cultures, and their histological behaviour was examined in vivo. Different PCL meshes were implanted into four groups of rats, with 10 rats in each group: PCL meshes, PCL meshes with alginate and calcium chloride, PCL meshes with gentamicin, and PCL meshes with alginate and gentamicin. Thirty-six microporous meshes were manufactured, and their bactericidal properties were assessed. When the meshes did not include an antibiotic, an inhibition halo was not observed; when the gentamicin was free, an asymmetric inhibition area of 5.65 ± 0.46 cm2 was present; when the gentamicin was encapsulated, a rectangular area of 5.40 ± 0.38 cm2 was observed. In the rats, macroporous and microporous mesh implants produced mild inflammation and substantial fibrosis with collagen and neovascular foci. A significant difference was observed in fibroblastic activity between the PCL with alginate group and the PCL with alginate and gentamicin group microporous meshes (p = .013) and in collagen deposits between the macroporous and microporous meshes in the PCL mesh group (p = .033). The feasibility of manufacturing drug-doped printed PCL meshes containing alginate and gentamicin was verified, and the meshes exhibited bactericidal effects and good histopathological behaviour.
CONFLICT OF INTEREST
The authors have declared that they have no conflict of interest.
REFERENCES
- Ballard, D., Weisman, J., Jammalamadaka, U., Tappa, K., Alexander, J., & Griffen, F. (2017). Three-dimensional printing of bioactive hernia meshes: In vitro proof of principle. Surgery, 161(6), 1479–1481. https://doi.org/10.1016/j.surg.2016.08.033
- Bölgen, N., Vargel, İ., Korkusuz, P., Menceloğlu, Y., & Pişkin, E. (2007). In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B(2), 530–543. https://doi.org/10.1002/jbm.b.30694
- Chen, M., Patra, P., Warner, S., & Bhowmick, S. (2007). Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Engineering, 0(0), 070110055731001. https://doi.org/10.1089/ten.2007.13.ft-340
10.1089/ten.2007.13.ft?340 Google Scholar
- Cobb, W., Kercher, K., & Heniford, B. (2005). The argument for lightweight polypropylene mesh in hernia repair. Surgical Innovation, 12(1), 63–69. https://doi.org/10.1177/155335060501200109
- Deeken, C., Abdo, M., Frisella, M., & Matthews, B. (2010). Physicomechanical evaluation of absorbable and nonabsorbable barrier composite meshes for laparoscopic ventral hernia repair. Surgical Endoscopy, 25(5), 1541–1552. https://doi.org/10.1007/s00464-010-1432-0
- Deeken, C., Abdo, M., Frisella, M., & Matthews, B. (2011). Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair. Journal of the American College of Surgeons, 212(1), 68–79. https://doi.org/10.1016/j.jamcollsurg.2010.09.012
- Deeken, C., Faucher, K., & Matthews, B. (2011). A review of the composition, characteristics, and effectiveness of barrier mesh prostheses utilized for laparoscopic ventral hernia repair. Surgical Endoscopy, 26(2), 566–575. https://doi.org/10.1007/s00464-011-1899-3
- Deeken, C., & Lake, S. (2017). Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. Journal of the Mechanical Behavior of Biomedical Materials, 74, 411–427. https://doi.org/10.1016/j.jmbbm.2017.05.008
- Gopinathan, J., & Noh, I. (2018). Recent trends in bioinks for 3D printing. Biomaterials Research, 22(1), 11. https://doi.org/10.1186/s40824-018-0122-1
- Gungor, B., Esen, Ş., Gök, A., Yılmaz, H., Malazgirt, Z., & Leblebicioğlu, H. (2010). Comparison of the adherence of E. Coli and S. Aureus to ten different prosthetic mesh grafts: In vitro experimental study. Indian Journal Of Surgery, 72(3), 226–231. https://doi.org/10.1007/s12262-010-0061-0
- Hall Barrientos, I., Paladino, E., Brozio, S., Passarelli, M., Moug, S., Black, R., et al. (2017). Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repair. International Journal of Pharmaceutics, 517(1-2), 329–337. https://doi.org/10.1016/j.ijpharm.2016.12.022
- Harth, K., Rosen, M., Thatiparti, T., Jacobs, M., Halaweish, I., Bajaksouzian, S., et al. (2010). Antibiotic-releasing mesh coating to reduce prosthetic sepsis: An in vivo study. Journal of Surgical Research, 163(2), 337–343. https://doi.org/10.1016/j.jss.2010.03.065
- Jakubova, R., Mickova, A., Buzgo, M., Rampichova, M., Prosecka, E., Tvrdik, D., & Amler, E. (2011). Immobilization of thrombocytes on PCL nanofibres enhances chondrocyte proliferation in vitro. Cell Proliferation, 44(2), 183–191. https://doi.org/10.1111/j.1365-2184.2011.00737.x
- Jiang, P., Yan, C., Guo, Y., Zhang, X., Cai, M., Jia, X., … Zhou, F. (2019). Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels. Biomaterials Science, 7(5), 1805–1814. https://doi.org/10.1039/c9bm00081j
- Jordán Cháves, C. A. (2017). Utilidad de colocación de mallas intraperitoneales supraaponeuróticas impregnadas con alginato cálcico y alginato cálcico con factores de crecimiento. (Tesis Doctoral Inédita). Universidad de Sevilla, Sevilla.
- Junge, K., Rosch, R., Klinge, U., Krones, C., Klosterhalfen, B., Mertens, P., … Schumpelick, V. (2005). Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials, 26(7), 787–793. https://doi.org/10.1016/j.biomaterials.2004.02.070
- Kalaba, S., Gerhard, E., Winder, J., Pauli, E., Haluck, R., & Yang, J. (2016). Design strategies and applications of biomaterials and devices for Hernia repair. Bioactive Materials, 1(1), 2–17. https://doi.org/10.1016/j.bioactmat.2016.05.002
- Knightly, J., Agostino, D., & Cliffton, E. (1962). The effect of fibrinolysin and heparin on the formation of peritoneal adhesion. Surgery, 52, 250–258.
- Kondaveeti, S., Bueno, P., Carmona-Ribeiro, A., Esposito, F., Lincopan, N., Sierakowski, M., & Petri, D. (2018). Microbicidal gentamicin-alginate hydrogels. Carbohydrate Polymers, 186, 159–167. https://doi.org/10.1016/j.carbpol.2018.01.044
- Leber, G. (1998). Long-term complications associated with prosthetic repair of incisional hernias. Archives of Surgery, 133(4), 378–382. https://doi.org/10.1001/archsurg.133.4.378
- Marques, C., Diogo, G., Pina, S., Oliveira, J., Silva, T., & Reis, R. (2019). Collagen-based bioinks for hard tissue engineering applications: A comprehensive review. Journal of Materials Science: Materials in Medicine, 30(3). https://doi.org/10.1007/s10856-019-6234-x
- Mohsina, A., Kumar, N., Sharma, A., Shrivastava, S., Mathew, D., Remya, V., et al. (2017). Polypropylene mesh seeded with fibroblasts: A new approach for the repair of abdominal wall defects in rats. Tissue and Cell, 49(3), 383–392. https://doi.org/10.1016/j.tice.2017.04.004
- Moroni, L., Boland, T., Burdick, J., De Maria, C., Derby, B., Forgacs, G., et al. (2018). Biofabrication: A guide to technology and terminology. Trends in Biotechnology, 36(4), 384–402. https://doi.org/10.1016/j.tibtech.2017.10.015
- Plencner, M., Prosecká, E., Rampichová, M., East, B., Buzgo, M., Vysloužilová, L., … Amler, E. (2015). Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-epsilon;-caprolactone nanofibers functionalized with thrombocyte-rich solution. International Journal of Nanomedicine, 10, 2635–2646. https://doi.org/10.2147/ijn.s77816
- Qiu, W., Zhong, C., Xu, R., Zou, T., Wang, F., Fan, Y., … Yang, Z. (2018). Novel large-pore lightweight polypropylene mesh has better biocompatibility for rat model of hernia. Journal Of Biomedical Materials Research Part A, 106(5), 1269–1275. https://doi.org/10.1002/jbm.a.36326
- Rampichová, M., Chvojka, J., Buzgo, M., Prosecká, E., Mikeš, P., Vysloužilová, L., … Amler, E. (2012). Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Proliferation, 46(1), 23–37. https://doi.org/10.1111/cpr.12001
- Roohani-Esfahani, S., Nouri-Khorasani, S., Lu, Z., Appleyard, R., & Zreiqat, H. (2010). The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials, 31(21), 5498–5509. https://doi.org/10.1016/j.biomaterials.2010.03.058
- Rutkow, I., & Robbins, A. (1993). Demographic, classificatory, and socioeconomic aspects of hernia repair in the United States. Surgical Clinics of North America, 73(3), 413–426. https://doi.org/10.1016/s0039-6109(16)46027-5
- Sanders, D., Kingsnorth, A., Lambie, J., Bond, P., Moate, R., & Steer, J. (2012). An experimental study exploring the relationship between the size of bacterial inoculum and bacterial adherence to prosthetic mesh. Surgical Endoscopy, 27(3), 978–985. https://doi.org/10.1007/s00464-012-2545-4
- Ünek, T., Sökmen, S., Egeli, T., Avkan Oğuz, V., Ellidokuz, H., & Obuz, F. (2018). The results of expanded-polytetrafluoroethylene mesh repair in difficult abdominal wall defects. Asian Journal Of Surgery, 42, 131–143. https://doi.org/10.1016/j.asjsur.2017.12.001
- Wayne, P. A. (2000a). National Committee for Clinical Laboratory Standards (NCCLS). Disk diffusion supplemental tables. Document M100-S10.
- Wayne, P. A. (2000b). National Committee for Clinical Laboratory Standards (NCCLS). MIC testing supplemental tables. Document M100-S10.
- Wayne, P. A. (2000c). National Committee for Clinical Laboratory Standards (NCCLS). Peformance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard, M2-A7.
- Weisman, J., Nicholson, C., Jammalamadaka, U., Tappa, K., Wilson, C., & Mills, D. (2015). Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. International Journal of Nanomedicine, 10, 357. https://doi.org/10.2147/ijn.s74811
- Woodruff, M., & Hutmacher, D. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002
- Yang, L., Wang, H., Liang, X., Chen, T., Chen, W., Song, Y., & Wang, J. (2014). Bacteria in hernia sac: An important risk fact for surgical site infection after incarcerated hernia repair. Hernia, 19(2), 279–283. https://doi.org/10.1007/s10029-014-1275-z
- Zhao, W., Ju, Y., Christ, G., Atala, A., Yoo, J., & Lee, S. (2013). Diaphragmatic muscle reconstruction with an aligned electrospun poly(ε-caprolactone)/collagen hybrid scaffold. Biomaterials, 34(33), 8235–8240. https://doi.org/10.1016/j.biomaterials.2013.07.057