Preconditioning with interleukin-1 beta and interferon-gamma enhances the efficacy of human umbilical cord blood-derived mesenchymal stem cells-based therapy via enhancing prostaglandin E2 secretion and indoleamine 2,3-dioxygenase activity in dextran sulfate sodium-induced colitis
Yeonsil Yu
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorSae Mi Yoo
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorHwan Hee Park
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorSong Yi Baek
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorYoon-Jin Kim
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorSeunghee Lee
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorYu Lee Kim
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorCorresponding Author
Kwang-Won Seo
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Correspondence
Kwang-Won Seo and Kyung-Sun Kang, Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University. Seoul 08826, South Korea.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kyung-Sun Kang
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
Correspondence
Kwang-Won Seo and Kyung-Sun Kang, Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University. Seoul 08826, South Korea.
Email: [email protected]; [email protected]
Search for more papers by this authorYeonsil Yu
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorSae Mi Yoo
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorHwan Hee Park
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorSong Yi Baek
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorYoon-Jin Kim
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorSeunghee Lee
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorYu Lee Kim
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Search for more papers by this authorCorresponding Author
Kwang-Won Seo
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Correspondence
Kwang-Won Seo and Kyung-Sun Kang, Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University. Seoul 08826, South Korea.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kyung-Sun Kang
Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
Correspondence
Kwang-Won Seo and Kyung-Sun Kang, Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University. Seoul 08826, South Korea.
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
Preconditioning with inflammatory cytokines has improved mesenchymal stem cells characteristics, including differentiation and immunomodulating functions. In this study, we developed a preconditioning combination strategy using interleukin-1beta (IL-1β) and interferon-gamma (IFN-γ) to enhance the immuneregulatory ability of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Our results showed that hUCB-MSCs preconditioned with IL-1β and IFN-γ (primed hUCB-MSCs) created a statistically significant decrease in peripheral blood mononuclear cell proliferation, indicating that their immunosuppressive ability was increased. The secretion of PGE2, cyclooxygenase 2 mRNA expression, and indoleamine 2,3-dioxygenase (IDO) mRNA expression in primed hUCB-MSCs was significantly higher than those in the untreated hUCB-MSCs or the IL-1β or IFN-γ only treated hUCB-MSCs. When inhibitors of IDO and PGE2 were treated, peripheral blood mononuclear cell proliferation, which is inhibited by primed hUCB-MSCs, was recovered. We found that Th1 T cell differentiation was also inhibited by PGE2 and IDO in the primed hUCB-MSCs, and Tregs differentiation was increased by PGE2 and IDO in the primed hUCB-MSCs. Furthermore, the primed hUCB-MSCs as well as supernatants increase CD4+ T cells migration. We demonstrated the therapeutic effects of primed hUCB-MSCs in dextran sulfate sodium-induced colitis model. In conclusion, we have demonstrated that primed hUCB-MSCs simultaneously enhance PGE2 and IDO and greatly improve the immunoregulatory capacity of MSCs, and we have developed an optimal condition for pretreatment of MSCs for the treatment of immune diseases. Our results raise the possibility that the combination of PGE2 and IDO could be therapeutic mediators for controlling immunosuppression of MSCs.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interests regarding the publication of this paper.
Supporting Information
Filename | Description |
---|---|
term2930-supp-0001-supp_info.docxWord 2007 document , 13.9 KB | Data S1. Supplementary information |
term2930-supp-0002-supp_info.docxWord 2007 document , 409.3 KB |
Table S1. Microarray Analysis Figure S1. Characterization of hUCB-MSCs under the stimulation of IFN-γ and IL-1β. MSCs were culture with or without IFN-γ and IL-1β for 24 h. (a) Differentiation capacity of unstimulated, IFN-γ and IL-1β stimulated MSCs into adipocytes, osteoblasts and chondroblasts. (b) The expression of immunophenotypic surface antigens on MCS was detected by flow cytometric analysis. Figure S2. Colon length in different DSS concentration. We have tested 3%, 4% and 5% DSS to induce colitis and confirmed severe symptoms by observing shorted colon lengths in the 4% and 5% DSS treated groups. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Barmeyer, C., Harren, M., Schmitz, H., Heinzel-Pleines, U., Mankertz, J., Seidler, U., … Schulzke, J. D. (2004). Mechanisms of diarrhea in the interleukin-2-deficient mouse model of colonic inflammation. American Journal of Physiology. Gastrointestinal and Liver Physiology, 286(2), G244–G252. https://doi.org/10.1152/ajpgi.00141.2003
- Cheng, W., Su, J., Hu, Y., Huang, Q., Shi, H., Wang, L., & Ren, J. (2017). Interleukin-25 primed mesenchymal stem cells achieve better therapeutic effects on dextran sulfate sodium-induced colitis via inhibiting Th17 immune response and inducing T regulatory cell phenotype. American Journal of Translational Research, 9(9), 4149–4160.
- Ciccocioppo, R., Cangemi, G. C., Kruzliak, P., Gallia, A., Betti, E., Badulli, C., … Corazza, G. R. (2015). Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn's disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact. Stem Cell Research & Therapy, 6, 137. https://doi.org/10.1186/s13287-015-0122-1
- Duijvestein, M., Wildenberg, M. E., Welling, M. M., Hennink, S., Molendijk, I., van Zuylen, V. L., … Hommes, D. W. (2011). Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells, 29(10), 1549–1558. https://doi.org/10.1002/stem.698
- El-Badri, N. S., Maheshwari, A., & Sanberg, P. R. (2004). Mesenchymal stem cells in autoimmune disease. Stem Cells and Development, 13(5), 463–472. https://doi.org/10.1089/scd.2004.13.463
- Fan, H., Zhao, G., Liu, L., Liu, F., Gong, W., Liu, X., … Hou, Y. (2012). Pre-treatment with IL-1beta enhances the efficacy of MSC transplantation in DSS-induced colitis. Cellular & Molecular Immunology, 9(6), 473–481. https://doi.org/10.1038/cmi.2012.40
- Fang, B., Song, Y. P., Liao, L. M., Han, Q., & Zhao, R. C. (2006). Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplantation, 38(5), 389–390. https://doi.org/10.1038/sj.bmt.1705457
- Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D., & Delgado, M. (2009). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 136(3), 978–989. https://doi.org/10.1053/j.gastro.2008.11.041
- Gonzalez-Rey, E., Anderson, P., Gonzalez, M. A., Rico, L., Buscher, D., & Delgado, M. (2009). Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut, 58(7), 929–939. https://doi.org/10.1136/gut.2008.168534
- Grant, R. S., Naif, H., Thuruthyil, S. J., Nasr, N., Littlejohn, T., Takikawa, O., & Kapoor, V. (2000). Induction of indolamine 2,3-dioxygenase in primary human macrophages by human immunodeficiency virus type 1 is strain dependent. Journal of Virology, 74(9), 4110–4115. https://doi.org/10.1128/JVI.74.9.4110-4115.2000
- Ha, F., & Khalil, H. (2015). Crohn's disease: a clinical update. Therapeutic Advances in Gastroenterology, 8(6), 352–359. https://doi.org/10.1177/1756283X15592585
- He, X. W., He, X. S., Lian, L., Wu, X. J., & Lan, P. (2012). Systemic infusion of bone marrow-derived mesenchymal stem cells for treatment of experimental colitis in mice. Digestive Diseases and Sciences, 57(12), 3136–3144. https://doi.org/10.1007/s10620-012-2290-5
- Hermankova, B., Zajicova, A., Javorkova, E., Chudickova, M., Trosan, P., Hajkova, M., … Holan, V. (2016). Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-gamma-treated mesenchymal stem cells. Immunobiology, 221(2), 129–136. https://doi.org/10.1016/j.imbio.2015.09.017
- Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M., & Silberstein, L. E. (2006). Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24(4), 1030–1041. https://doi.org/10.1634/stemcells.2005-0319
- Hong, J. W., Lim, J. H., Chung, C. J., Kang, T. J., Kim, T. Y., Kim, Y. S., … Lew, D. H. (2017). Immune tolerance of human dental pulp-derived mesenchymal stem cells mediated by CD4(+)CD25(+)FoxP3(+) Regulatory T-Cells and Induced by TGF-beta1 and IL-10. Yonsei Medical Journal, 58(5), 1031–1039. https://doi.org/10.3349/ymj.2017.58.5.1031
- Jin, P., Zhao, Y., Liu, H., Chen, J., Ren, J., Jin, J., … Stroncek, D. (2016). Interferon-gamma and tumor necrosis factor-alpha polarize bone marrow stromal cells uniformly to a Th1 phenotype. Scientific Reports, 6, 26345. https://doi.org/10.1038/srep26345
- Kim, D. S., Jang, I. K., Lee, M. W., Ko, Y. J., Lee, D. H., Lee, J. W., … Yoo, K. H. (2018). Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-gamma. eBioMedicine, 28, 261–273. https://doi.org/10.1016/j.ebiom.2018.01.002
- Kim, H. S., Shin, T. H., Lee, B. C., Yu, K. R., Seo, Y., Lee, S., … Núñez, G. (2013). Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology, 145(6), 1392–1403 e1391-1398. https://doi.org/10.1053/j.gastro.2013.08.033
- Kim, H. S., Shin, T. H., Yang, S. R., Seo, M. S., Kim, D. J., Kang, S. K., … Kang, K. S. (2010). Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood. PLoS ONE, 5(10), e15369. https://doi.org/10.1371/journal.pone.0015369
- Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., … Annunziato, F. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398. https://doi.org/10.1634/stemcells.2005-0008
- Kuenzig, M. E., Rezaie, A., Seow, C. H., Otley, A. R., Steinhart, A. H., Griffiths, A. M., … Benchimol, E. I. (2014). Budesonide for maintenance of remission in Crohn's disease. Cochrane Database of Systematic Reviews, Aug 21(8), CD002913. https://doi.org/10.1002/14651858.CD002913.pub3
- Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., … Bacigalupo, A. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11(5), 389–398. https://doi.org/10.1016/j.bbmt.2005.02.001
- Le Blanc, K., Rasmusson, I., Sundberg, B., Götherström, C., Hassan, M., Uzunel, M., & Ringdén, O. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet, 363(9419), 1439–1441. https://doi.org/10.1016/S0140-6736(04)16104-7
- Liu, M., Zeng, X., Wang, J., Fu, Z., Wang, J., Liu, M., … Xu, J. (2016). Immunomodulation by mesenchymal stem cells in treating human autoimmune disease-associated lung fibrosis. Stem Cell Research & Therapy, 7(1), 63. https://doi.org/10.1186/s13287-016-0319-y
- Nikolic, A., Simovic Markovic, B., Gazdic, M., Randall Harrell, C., Fellabaum, C., Jovicic, N., … Volarevic, V. (2018). Intraperitoneal administration of mesenchymal stem cells ameliorates acute dextran sulfate sodium-induced colitis by suppressing dendritic cells. Biomedicine & Pharmacotherapy, 100, 426–432. https://doi.org/10.1016/j.biopha.2018.02.060
- Oses, C., Olivares, B., Ezquer, M., Acosta, C., Bosch, P., Donoso, M., … Ezquer, F. (2017). Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS ONE, 12(5), e0178011. https://doi.org/10.1371/journal.pone.0178011
- Oshita, K., Yamaoka, K., & Tanaka, Y. (2013). Regulation of osteoclastogenesis by human mesenchymal stem cells leading to application of a novel treatment for rheumatoid arthritis. Journal of UOEH, 35(1), 33–37. https://doi.org/10.7888/juoeh.35.33
- Pouya, S., Heidari, M., Baghaei, K., Asadzadeh Aghdaei, H., Moradi, A., Namaki, S., … Hashemi, S. M. (2018). Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. International Immunopharmacology, 54, 86–94. https://doi.org/10.1016/j.intimp.2017.11.001
- Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., … Shi, Y. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150. https://doi.org/10.1016/j.stem.2007.11.014
- Ries, C., Egea, V., Karow, M., Kolb, H., Jochum, M., & Neth, P. (2007). MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: Differential regulation by inflammatory cytokines. Blood, 109(9), 4055–4063. https://doi.org/10.1182/blood-2006-10-051060
- Sellon, R. K., Tonkonogy, S., Schultz, M., Dieleman, L. A., Grenther, W., Balish, E. D., … Sartor, R. B. (1998). Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infection and Immunity, 66(11), 5224–5231.
- Seo, Y., Yang, S. R., Jee, M. K., Joo, E. K., Roh, K. H., Seo, M. S., … Kang, K. S. (2011). Human umbilical cord blood-derived mesenchymal stem cells protect against neuronal cell death and ameliorate motor deficits in Niemann Pick type C1 mice. Cell Transplantation, 20(7), 1033–1047. https://doi.org/10.3727/096368910X545086
- Singh, V., Yeoh, B. S., Carvalho, F., Gewirtz, A. T., & Vijay-Kumar, M. (2015). Proneness of TLR5 deficient mice to develop colitis is microbiota dependent. Gut Microbes, 6(4), 279–283. https://doi.org/10.1080/19490976.2015.1060390
- Stallmach, A., Hagel, S., & Bruns, T. (2010). Adverse effects of biologics used for treating IBD. Best Practice & Research in Clinical Gastroenterology, 24(2), 167–182. https://doi.org/10.1016/j.bpg.2010.01.002
- Takac, B., Mihaljevic, S., Stefanic, M., Glavaš-Obrovac, L., Kibel, A., & Samardžija, M. (2014). Importance of interleukin 6 in pathogenesis of inflammatory bowel disease. Collegium Antropologicum, 38(2), 659–664.
- Takikawa, O., Kuroiwa, T., Yamazaki, F., & Kido, R. (1988). Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. The Journal of Biological Chemistry, 263(4), 2041–2048.
- Tang, Y., Chen, Y., Wang, X., Song, G., Li, Y. G., & Shi, L. J. (2015). Combinatorial intervention with mesenchymal stem cells and granulocyte colony-stimulating factor in a rat model of ulcerative colitis. Digestive Diseases and Sciences, 60(7), 1948–1957. https://doi.org/10.1007/s10620-015-3655-3
- Watanabe, T., Kitani, A., Murray, P. J., Wakatsuki, Y., Fuss, I. J., & Strober, W. (2006). Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. Immunity, 25(3), 473–485. https://doi.org/10.1016/j.immuni.2006.06.018
- Yamada, A., Arakaki, R., Saito, M., Tsunematsu, T., Kudo, Y., & Ishimaru, N. (2016). Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 22(7), 2195–2205. https://doi.org/10.3748/wjg.v22.i7.2195
- Yu, Y., Song, E. M., Lee, K. E., Joo, Y. H., Kim, S. E., Moon, C. M., … Jo, I. (2017). Therapeutic potential of tonsil-derived mesenchymal stem cells in dextran sulfate sodium-induced experimental murine colitis. PLoS ONE, 12(8), e0183141. https://doi.org/10.1371/journal.pone.0183141
- Zhou, H., Guo, M., Bian, C., Sun, Z., Yang, Z., Zeng, Y., … Zhao, R. C. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: Clinical report. Biology of Blood and Marrow Transplantation, 16(3), 403–412. https://doi.org/10.1016/j.bbmt.2009.11.006