Mesenchymal stem cells: Cell therapy and regeneration potential
Christina Brown
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorChristina McKee
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorShreeya Bakshi
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorKeegan Walker
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorEryk Hakman
Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
Search for more papers by this authorSophia Halassy
Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
Search for more papers by this authorDavid Svinarich
Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
Ascension Providence Hospital, Southfield, MI, USA
Search for more papers by this authorRobert Dodds
Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
Search for more papers by this authorChhabi K. Govind
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorCorresponding Author
G. Rasul Chaudhry
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Correspondence
G. Rasul Chaudhry, Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
Email: [email protected]
Search for more papers by this authorChristina Brown
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorChristina McKee
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorShreeya Bakshi
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorKeegan Walker
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorEryk Hakman
Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
Search for more papers by this authorSophia Halassy
Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
Search for more papers by this authorDavid Svinarich
Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
Ascension Providence Hospital, Southfield, MI, USA
Search for more papers by this authorRobert Dodds
Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
Search for more papers by this authorChhabi K. Govind
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Search for more papers by this authorCorresponding Author
G. Rasul Chaudhry
Department of Biological Sciences, Oakland University, Rochester, MI, USA
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
Correspondence
G. Rasul Chaudhry, Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self-renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name “MSCs” itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine.
CONFLICT OF INTEREST
The authors have no conflict of interest to disclose.
REFERENCES
- Ahn, J., Park, E.-m., Kim, B. J., Kim, J.-S., Choi, B., Lee, S.-H., & Han, I. (2015). Transplantation of human Wharton's jelly-derived mesenchymal stem cells highly expressing TGFβ receptors in a rabbit model of disc degeneration. Stem Cell Research & Therapy, 6, 190. https://doi.org/10.1186/s13287-015-0183-1
- Alhadlaq, A., & Mao, J. J. (2004). Mesenchymal stem cells: Isolation and therapeutics. Stem Cells and Development, 13(4), 436–448. https://doi.org/10.1089/scd.2004.13.436
- Alimperti, S., Lei, P., Wen, Y., Tian, J., Campbell, A. M., & Andreadis, S. T. (2014). Serum-free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential. Biotechnology Progress, 30(4), 974–983. https://doi.org/10.1002/btpr.1904
- Alimperti, S., You, H., George, T., Agarwal, S. K., & Andreadis, S. T. (2014). Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo. Journal of Cell Science, 127(12), 2627–2638. https://doi.org/10.1242/jcs.134833
- Al-Shaibani, M. B., Dickinson, A., Nong-Wang, X., Tulah, A. S., & Lovat, P. E. (2017). Effect of conditioned media from mesenchymal stem cells (MSC-CM) on wound healing using a prototype of a fully humanised 3D skin model. Cytotherapy, 19(5), e23–e24. https://doi.org/10.1016/j.jcyt.2017.03.062
10.1016/j.jcyt.2017.03.062 Google Scholar
- Amit, M., & Itskovitz-Eldor, J. (2002). Derivation and spontaneous differentiation of human embryonic stem cells. Journal of Anatomy, 200(3), 225–232. https://doi.org/10.1046/j.1469-7580.2002.00032.x
- Amorin, B., Alegretti, A. P., Valim, V., Pezzi, A., Laureano, A. M., da Silva, M. A. L., & Silla, L. (2014). Mesenchymal stem cell therapy and acute graft-versus-host disease: A review. Human Cell, 27(4), 137–150. https://doi.org/10.1007/s13577-014-0095-x
- Anastasiu, D. M., Cean, A., Bojin, M. F., Gluhovschi, A., Panaitescu, C., Paunescu, V., & Tanasie, G. (2016). Explants-isolated human placenta and umbilical cord cells share characteristics of both epithelial and mesenchymal stem cells. Romanian Journal of Morphology and Embryology, 57(2), 383–390.
- Araujo, A. B., Salton, G. D., Furlan, J. M., Schneider, N., Angeli, M. H., Laureano, A. M., & Paz, A. H. (2017). Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord. Cytotherapy, 19(5), 577–585. https://doi.org/10.1016/j.jcyt.2017.03.001
- Avercenc-Léger, L., Guerci, P., Virion, J.-M., Cauchois, G., Hupont, S., Rahouadj, R., & Reppel, L. (2017). Umbilical cord-derived mesenchymal stromal cells: Predictive obstetric factors for cell proliferation and chondrogenic differentiation. Stem Cell Research & Therapy, 8(1), 161–161. https://doi.org/10.1186/s13287-017-0609-z
- Baek, S. J., Kang, S. K., & Ra, J. C. (2011). In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Experimental & Molecular Medicine, 43(10), 596–603. https://doi.org/10.3858/emm.2011.43.10.069
- Baer, P. C., & Geiger, H. (2012). Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells International, 2012, 812693. https://doi.org/10.1155/2012/812693
- Bakopoulou, A., Apatzidou, D., Aggelidou, E., Gousopoulou, E., Leyhausen, G., Volk, J., & Geurtsen, W. (2017). Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects "stemness" properties. Stem Cell Research & Therapy, 8(1), 247. https://doi.org/10.1186/s13287-017-0705-0
- Bakshi, S., McKee, C., Walker, K., Brown, C., & Chaudhry, G. R. (2018). Toxicity of JQ1 in neuronal derivatives of human umbilical cord mesenchymal stem cells. Oncotarget, 9(73), 33853–33864. https://doi.org/10.18632/oncotarget.26127
- Batsali, A. K., Pontikoglou, C., Koutroulakis, D., Pavlaki, K. I., Damianaki, A., Mavroudi, I., & Papadaki, H. A. (2017). Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Research & Therapy, 8, 102. https://doi.org/10.1186/s13287-017-0555-9
- Beeravolu, N., Brougham, J., Khan, I., McKee, C., Perez-Cruet, M., & Chaudhry, G. R. (2018). Human umbilical cord derivatives regenerate intervertebral disc. Journal of Tissue Engineering and Regenerative Medicine, 12(1), e579–e591. https://doi.org/10.1002/term.2330
- Beeravolu, N., Khan, I., McKee, C., Dinda, S., Thibodeau, B., Wilson, G., & Chaudhry, G. R. (2016). Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord. Stem Cell Research, 16(3), 696–711. https://doi.org/10.1016/j.scr.2016.04.010
- Beeravolu, N., McKee, C., Alamri, A., Mikhael, S., Brown, C., Perez-Cruet, M., & Chaudhry, G. R. (2017). Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. Journal of Visualized Experiments, (122), e55224. https://doi.org/10.3791/55224
- Bellairs, R. (1986). The primitive streak. Anatomy and Embryology, 174(1), 1–14. https://doi.org/10.1007/BF00318331
- Bianco, P., & Robey, P. (2000). Marrow stromal stem cells. Journal of Clinical Investigation, 105(12), 1663–1668. https://doi.org/10.1172/jci10413
- Bianco, P., Robey, P. G., & Simmons, P. J. (2008). Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell, 2(4), 313–319. https://doi.org/10.1016/j.stem.2008.03.002
- Bieback, K., & Netsch, P. (2016). Isolation, culture, and characterization of human umbilical cord blood-derived mesenchymal stromal cells. Methods in Molcular Biology, 1416, 245–258. https://doi.org/10.1007/978-1-4939-3584-0_14
- Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7, 14–14. https://doi.org/10.1186/1471-2121-7-14
- Bonafede, R., & Mariotti, R. (2017). ALS pathogenesis and therapeutic approaches: The role of mesenchymal stem cells and extracellular vesicles. Frontiers in Cellular Neuroscience, 11, 80–80. https://doi.org/10.3389/fncel.2017.00080
- Bosetti, M., Boccafoschi, F., Leigheb, M., Bianchi Andrea, E., & Cannas, M. (2011). Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 6(3), 205–213. https://doi.org/10.1002/term.416
- Brady, K., Dickinson, S. C., Guillot, P. V., Polak, J., Blom, A. W., Kafienah, W., & Hollander, A. P. (2014). Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis. Stem Cells and Development, 23(5), 541–554. https://doi.org/10.1089/scd.2013.0301
- Brennan, M. A., Renaud, A., Guilloton, F., Mebarki, M., Trichet, V., Sensebé, L., & Layrolle, P. (2017). Inferior in vivo osteogenesis and superior angiogeneis of human adipose tissue: A comparison with bone marrow-derived stromal stem cells cultured in xeno-free conditions. Stem Cells Translational Medicine, 6(12), 2160–2172. https://doi.org/10.1002/sctm.17-0133
- Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., & Fisk, N. M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98(8), 2396–2402. https://doi.org/10.1182/blood.V98.8.2396
- Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650. https://doi.org/10.1002/jor.1100090504
- Caplan, A. I. (2010). What's in a name? Tissue Engineering Part A, 16(8), 2415–2417. https://doi.org/10.1089/ten.TEA.2010.0216
- Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine, 6(6), 1445–1451. https://doi.org/10.1002/sctm.17-0051
- Carpenter, M. K., Rosler, E., & Rao, M. S. (2003). Characterization and differentiation of human embryonic stem cells. Cloning and Stem Cells, 5(1), 79–88. https://doi.org/10.1089/153623003321512193
- Chen, G., Yue, A., Ruan, Z., Yin, Y., Wang, R., Ren, Y., & Zhu, L. (2015). Comparison of biological characteristics of mesenchymal stem cells derived from maternal-origin placenta and Wharton's jelly. Stem Cell Research & Therapy, 6, 228. https://doi.org/10.1186/s13287-015-0219-6
- Chen, K., Johnson, K., McKay, R., & Robey, P. (2017). Concise review: Conceptualizing paralogous stem-cell niches and unfolding bone marrow progenitor cell identities. Stem Cells, 36(1), 11–21. https://doi.org/10.1002/stem.2711
- Chen, X. Q., Chen, L. L., Fan, L., Fang, J., Chen, Z. Y., & Li, W. W. (2014). Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats. Biochemical and Biophysical Research Communications, 447(1), 145–151. https://doi.org/10.1016/j.bbrc.2014.03.131
- Cheng, H., Qiu, L., Ma, J., Zhang, H., Cheng, M., Li, W., & Liu, K. (2011). Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Molecular Biology Reports, 38(8), 5161–5168. https://doi.org/10.1007/s11033-010-0665-2
- Cheng, J., Zhang, P., & Jiang, H. (2015). Let-7b-mediated pro-survival of transplanted mesenchymal stem cells for cardiac regeneration. Stem Cell Research & Therapy, 6, 216. https://doi.org/10.1186/s13287-015-0221-z
- Chetty, S., Praneetha, S., Govarthanan, K., Verma, R., & Vadivel Murugan, A. (2019). Noninvasive tracking and regenerative capabilities of transplanted human umbilical cord-derived mesenchymal stem cells labeled with I-III-IV semiconducting nanocrystals in liver-injured living mice. ACS Applied Materials & Interfaces, 11, 8763–8778. https://doi.org/10.1021/acsami.8b19953
- Choi, W., Kwon, S. J., Jin, H. J., Jeong, S. Y., Choi, S. J., Oh, W., & Jeon, E. S. (2017). Optimization of culture conditions for rapid clinical-scale expansion of human umbilical cord blood-derived mesenchymal stem cells. Clinical and Translational Medicine, 6(1), 38. https://doi.org/10.1186/s40169-017-0168-z
- Choudhery, M. S., Badowski, M., Muise, A., Pierce, J., & Harris, D. T. (2014). Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. Journal of Translational Medicine, 12, 8–8. https://doi.org/10.1186/1479-5876-12-8
- ClinicalTrials.gov. (2017). U.S. National library of medicine.
- Constantinescu, C. S., Farooqi, N., O'Brien, K., & Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology, 164(4), 1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x
- Cui, Y., Ma, S., Zhang, C., Cao, W., Liu, M., Li, D., & Guan, F. (2017). Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer's disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behavioural Brain Research, 320, 291–301. https://doi.org/10.1016/j.bbr.2016.12.021
- da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213. https://doi.org/10.1242/jcs.02932
- Dayment, R. N., Taylor, C. G., Albanna, M. Z., Sarchet, K. N., Ichim, T. E., & Woods, E. J. (2014). Large-scale expansion of mesenchymal stem cells in 3D cultures using xeno-free microcarriers and human platelet lysate. Cytotherapy, 16(4), S110–S111. https://doi.org/10.1016/j.jcyt.2014.01.408
- De Ugarte, D. A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P. A., Zhu, M., & Hedrick, M. H. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells, Tissues, Organs, 174(3), 101–109. https://doi.org/10.1159/000071150
- de Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Gargesha, M., Merino, A., Korevaar, S. S., & Hoogduijn, M. J. (2018). Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells, 36(4), 602–615. https://doi.org/10.1002/stem.2779
- Dennis, J. E., & Caplan, A. I. (2004). Advances in mesenchymal stem cell biology. Current Opinion in Orthopaedics, 15(5), 341–346. https://doi.org/10.1097/01.bco.0000134430.30813.f7
10.1097/01.bco.0000134430.30813.f7 Google Scholar
- Ding, S. L. S., Kumar, S., & Mok, P. L. (2017). Cellular reparative mechanisms of mesenchymal stem cells for retinal diseases. International Journal of Molecular Sciences, 18(8), 1406. https://doi.org/10.3390/ijms18081406
- D'Ippolito, G., Schiller, P. C., Ricordi, C., Roos, B. A., & Howard, G. A. (1999). Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. Journal of Bone and Mineral Research, 14(7), 1115–1122. https://doi.org/10.1359/jbmr.1999.14.7.1115
- Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
- Evangelista, A. F., Vannier-Santos, M. A., de Assis Silva, G. S., Silva, D. N., Juiz, P. J. L., Nonaka, C. K. V., & Villarreal, C. F. (2018). Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades. Journal of Neuroinflammation, 15(1), 189. https://doi.org/10.1186/s12974-018-1224-3
- Fariha, M. M., Chua, K. H., Tan, G. C., Tan, A. E., & Hayati, A. R. (2011). Human chorion-derived stem cells: Changes in stem cell properties during serial passage. Cytotherapy, 13(5), 582–593. https://doi.org/10.3109/14653249.2010.549121
- Farup, J., Madaro, L., Puri, P. L., & Mikkelsen, U. R. (2015). Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death & Disease, 6(7), e1830. https://doi.org/10.1038/cddis.2015.198
- Fiumana, E., Pasquinelli, G., Foroni, L., Carboni, M., Bonafe, F., Orrico, C., & Muscari, C. (2013). Localization of mesenchymal stem cells grafted with a hyaluronan-based scaffold in the infarcted heart. Journal of Surgical Research, 179(1), e21–e29. https://doi.org/10.1016/j.jss.2012.01.028
- Formigli, L., Paternostro, F., Tani, A., Mirabella, C., Quattrini Li, A., Nosi, D., & Zecchi-Orlandini, S. (2015). MSCs seeded on bioengineered scaffolds improve skin wound healing in rats. Wound Repair and Regeneration, 23(1), 115–123. https://doi.org/10.1111/wrr.12251
- Francois, S., Mouiseddine, M., Allenet-Lepage, B., Voswinkel, J., Douay, L., Benderitter, M., & Chapel, A. (2013). Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BioMed Research International, 2013, 151679. https://doi.org/10.1155/2013/151679
- Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4), 393–403.
- Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267–274.
- Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6(2), 230–247. https://doi.org/10.1097/00007890-196803000-00009
- Gabr, M. M., Zakaria, M. M., Refaie, A. F., Ismail, A. M., Khater, S. M., Ashamallah, S. A., & Ghoneim, M. A. (2018). Insulin-producing cells from adult human bone marrow mesenchymal stromal cells could control chemically induced diabetes in dogs: A preliminary study. Cell Transplantation, 27, 937–947. https://doi.org/10.1177/0963689718759913
- Gao, F., Chiu, S. M., Motan, D. A. L., Zhang, Z., Chen, L., Ji, H. L., & Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death & Disease, 7(1), e2062. https://doi.org/10.1038/cddis.2015.327
- Garikipati, V. N. S., Singh, S. P., Mohanram, Y., Gupta, A. K., Kapoor, D., & Nityanand, S. (2018). Isolation and characterization of mesenchymal stem cells from human fetus heart. PLoS ONE, 13(2), e0192244. https://doi.org/10.1371/journal.pone.0192244
- Giai Via, A., Frizziero, A., & Oliva, F. (2012). Biological properties of mesenchymal stem cells from different sources. Muscles, Ligaments and Tendons Journal, 2(3), 154–162.
- Goldring, C. E., Duffy, P. A., Benvenisty, N., Andrews, P. W., Ben-David, U., Eakins, R., & Park, B. K. (2011). Assessing the safety of stem cell therapeutics. Cell Stem Cell, 8(6), 618–628. https://doi.org/10.1016/j.stem.2011.05.012
- Gottipamula, S., Muttigi, M. S., Kolkundkar, U., & Seetharam, R. N. (2013). Serum-free media for the production of human mesenchymal stromal cells: A review. Cell Proliferation, 46(6), 608–627. https://doi.org/10.1111/cpr.12063
- Gucciardo, L., Lories, R., Ochsenbein-Kolble, N., Done, E., Zwijsen, A., & Deprest, J. (2009). Fetal mesenchymal stem cells: Isolation, properties and potential use in perinatology and regenerative medicine. BJOG, 116(2), 166–172. https://doi.org/10.1111/j.1471-0528.2008.02005.x
- Gugliandolo, A., Bramanti, P., & Mazzon, E. (2017). Mesenchymal stem cell therapy in Parkinson's disease animal models. Current Research Translational Medicine, 65(2), 51–60. https://doi.org/10.1016/j.retram.2016.10.007
- Guillot, P. V., Gotherstrom, C., Chan, J., Kurata, H., & Fisk, N. M. (2007). Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells, 25(3), 646–654. https://doi.org/10.1634/stemcells.2006-0208
- Han, L., Zhou, Y., Zhang, R., Wu, K., Lu, Y., Li, Y., & Jia, Y. (2018). MicroRNA let-7f-5p promotes bone marrow mesenchymal stem cells survival by targeting caspase-3 in Alzheimer disease model. Frontiers in Neuroscience, 12, 333. https://doi.org/10.3389/fnins.2018.00333
- Hao, L., Sun, H., Wang, J., Wang, T., Wang, M., & Zou, Z. (2012). Mesenchymal stromal cells for cell therapy: Besides supporting hematopoiesis. Interinatioal Journal of Hematology, 95(1), 34–46. https://doi.org/10.1007/s12185-011-0991-8
- Harris, V. K., Stark, J., Vyshkina, T., Blackshear, L., Joo, G., Stefanova, V., & Sadiq, S. A. (2018). Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. eBioMedicine, 29, 23–30. https://doi.org/10.1016/j.ebiom.2018.02.002
- Hass, R., Kasper, C., Böhm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS, 9(1), 12. https://doi.org/10.1186/1478-811X-9-12
- Helg, C., Starobinski, M., Jeannet, M., & Chapuis, B. (1998). Donor lymphocyte infusion for the treatment of relapse after allogeneic hematopoietic stem cell transplantation. Leukemia & Lymphoma, 29(3-4), 301–313. https://doi.org/10.3109/10428199809068567
- Hemmingsen, M., Vedel, S., Skafte-Pedersen, P., Sabourin, D., Collas, P., Bruus, H., & Dufva, M. (2013). The role of paracrine and autocrine signaling in the early phase of adipogenic differentiation of adipose-derived stem cells. PLoS ONE, 8(5), e63638–e63638. https://doi.org/10.1371/journal.pone.0063638
- Heo, J. S., Choi, Y., Kim, H.-S., & Kim, H. O. (2016). Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. International Journal of Molecular Medicine, 37(1), 115–125. https://doi.org/10.3892/ijmm.2015.2413
- Hiltzik, M. (2017). The FDA closes a huge loophole used by bogus stem-cell clinics, but delays serious enforcement for 3 years. Los Angeles Times.
- Hocking, A. M., & Gibran, N. S. (2010). Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair. Experimental Cell Research, 316(14), 2213–2219. https://doi.org/10.1016/j.yexcr.2010.05.009
- Hoffman, L. M., & Carpenter, M. K. (2005). Characterization and culture of human embryonic stem cells. Nature Biotechnology, 23(6), 699–708. https://doi.org/10.1038/nbt1102
- Hong, B., Lee, S., Shin, N., Ko, Y., Kim, D., Lee, J., & Lee, W. (2018). Bone regeneration with umbilical cord blood mesenchymal stem cells in femoral defects of ovariectomized rats. Osteoporos Sarcopenia, 4(3), 95–101. https://doi.org/10.1016/j.afos.2018.08.003
- Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., & Keating, A. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395. https://doi.org/10.1080/14653240500319234
- Hu, Y., Liao, L., Wang, Q., Ma, L., Ma, G., Jiang, X., & Zhao, R. C. (2003). Isolation and identification of mesenchymal stem cells from human fetal pancreas. The Journal of Laboratory and Clinical Medicine, 141(5), 342–349. https://doi.org/10.1016/s0022-2143(03)00022-2
- Im, G. II, Shin, Y.-W., & Lee, K.-B. (2005). Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis and Cartilage, 13(10), 845–853. https://doi.org/10.1016/j.joca.2005.05.005
- In't Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., de Groot-Swings, G. M., Claas, F. H., Fibbe, W. E., & Kanhai, H. H. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22(7), 1338–1345. https://doi.org/10.1634/stemcells.2004-0058
- Isern, J., Garcia-Garcia, A., Martin, A. M., Arranz, L., Martin-Perez, D., Torroja, C., & Mendez-Ferrer, S. (2014). The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife, 3, e03696. https://doi.org/10.7554/eLife.03696
- Ishiguro, H., Kaito, T., Yarimitsu, S., Hashimoto, K., Okada, R., Kushioka, J., & Yoshikawa, H. (2019). Intervertebral disc regeneration with an adipose mesenchymal stem cell-derived tissue-engineered construct in a rat nucleotomy model. Acta Biomaterialia, 87, 118–129. https://doi.org/10.1016/j.actbio.2019.01.050
- Ishii, T., & Eto, K. (2014). Fetal stem cell transplantation: Past, present, and future. World J Stem Cells, 6(4), 404–420. https://doi.org/10.4252/wjsc.v6.i4.404
- Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., & Goodell, M. A. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107(11), 1395–1402. https://doi.org/10.1172/jci12150
- Jackson, W., Lozito, T. P., Djouad, F., Kuhn, N. Z., Nesti, L. J., & Tuan, R. S. (2011). Differentiation and regeneration potential of mesenchymal progenitor cells derived from traumatized muscle tissue. Journal of Cellular and Molecular Medicine, 15(11), 2377–2388. https://doi.org/10.1111/j.1582-4934.2010.01225.x
- Jamali, F., Ma Hattab, D., Amman, J., & Awidi, A. (2018). Use of mesenchymal stem cells in Parkinson disease (PD). ClinicalTrials.gov.
- Jin, H. J., Bae, Y. K., Kim, M., Kwon, S.-J., Jeon, H. B., Choi, S. J., & Chang, J. W. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences, 14(9), 17986–18001. https://doi.org/10.3390/ijms140917986
- Jo, C. H., Lee, Y. G., Shin, W. H., Kim, H., Chai, J. W., Jeong, E. C., & Yoon, K. S. (2014). Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells, 32(5), 1254–1266. https://doi.org/10.1002/stem.1634
- Jurado, M., De La Mata, C., Ruiz-Garcia, A., Lopez-Fernandez, E., Espinosa, O., Remigia, M. J., & Solano, C. (2017). Adipose tissue-derived mesenchymal stromal cells as part of therapy for chronic graft-versus-host disease: A phase I/II study. Cytotherapy, 19(8), 927–936. https://doi.org/10.1016/j.jcyt.2017.05.002
- Kastrinaki, M. C., Pavlaki, K., Batsali, A. K., Kouvidi, E., Mavroudi, I., Pontikoglou, C., & Papadaki, H. A. (2013). Mesenchymal stem cells in immune-mediated bone marrow failure syndromes. Clinical and Developmental Immunology, 2013, 265608. https://doi.org/10.1155/2013/265608
- Khubutiya, M. S., Vagabov, A. V., Temnov, A. A., & Sklifas, A. N. (2014). Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy, 16(5), 579–585. https://doi.org/10.1016/j.jcyt.2013.07.017
- Kim, H., Lee, H., Kang, J., Bae, S., Kim, C., Lee, S., & Moon, J. (2018). Dual effects of human placenta-derived neural cells on neuroprotection and the inhibition of neuroinflammation in a rodent model of Parkinson's disease. Cell Transplantation, 27, 814–830. https://doi.org/10.1177/0963689718766324
- Kim, I., Lee, S. K., Yoon, J. I., Kim, D. E., Kim, M., & Ha, H. (2013). Fibrin glue improves the therapeutic effect of MSCs by sustaining survival and paracrine function. Tissue Engineering Part A, 19(21-22), 2373–2381. https://doi.org/10.1089/ten.TEA.2012.0665
- Kim, J., Jo, C., Kim, H., & Hwang, Y. (2018). Comparison of immunological characteristics of mesenchymal stem cells from the periodontal ligament, umbilical cord, and adipose tissue. Stem Cells International, 2018, 8429042, 1–12. https://doi.org/10.1155/2018/8429042
- Kim, J., Shin, J. M., Jeon, Y. J., Chung, H. M., & Chae, J.-I. (2012). Proteomic validation of multifunctional molecules in mesenchymal stem cells derived from human bone marrow, umbilical cord blood and peripheral blood. PLoS ONE, 7(5), e32350. https://doi.org/10.1371/journal.pone.0032350
- Kim, Y. J., Yoo, S. M., Park, H. H., Lim, H. J., Kim, Y. L., Lee, S., & Kang, K. S. (2017). Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochemical and Biophysical Research Communications, 493(2), 1102–1108. https://doi.org/10.1016/j.bbrc.2017.09.056
- Kirana, S., Stratmann, B., Prante, C., Prohaska, W., Koerperich, H., Lammers, D., & Tschoepe, D. (2012). Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. International Journal of Clinical Practice, 66(4), 384–393. https://doi.org/10.1111/j.1742-1241.2011.02886.x
- Krebsbach, P. H., & Villa-Diaz, L. G. (2017). The role of integrin α6 (CD49f) in stem cells: More than a conserved biomarker. Stem Cells and Development, 26(15), 1090–1099. https://doi.org/10.1089/scd.2016.0319
- Kumar, A., D'Souza, S. S., Moskvin, O. V., Toh, H., Wang, B., Zhang, J., & Slukvin, I. I. (2017). Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Reports, 19(9), 1902–1916. https://doi.org/10.1016/j.celrep.2017.05.019
- Kuraitis, D., Ruel, M., & Suuronen, E. J. (2011). Mesenchymal stem cells for cardiovascular regeneration. Cardiovascular Drugs and Therapy, 25(4), 349–362. https://doi.org/10.1007/s10557-011-6311-y
- Lacerda, L., Debeb, B. G., Smith, D., Larson, R., Solley, T., Xu, W., & Woodward, W. A. (2015). Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Research, 17, 42. https://doi.org/10.1186/s13058-015-0549-4
- Laitinen, A., Oja, S., Kilpinen, L., Kaartinen, T., Moller, J., Laitinen, S., & Nystedt, J. (2016). A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells. Cytotechnology, 68(4), 891–906. https://doi.org/10.1007/s10616-014-9841-x
- Law, S., & Chaudhuri, S. (2013). Mesenchymal stem cell and regenerative medicine: Regeneration versus immunomodulatory challenges. American Journal of Stem Cells, 2(1), 22–38.
- Lee, S., Choi, E., Cha, M.-J., & Hwang, K.-C. (2015). Cell adhesion and long-term survival of transplanted mesenchymal stem cells: A prerequisite for cell therapy. Oxidative Medicine and Cellular Longevity, 2015, 632902. https://doi.org/10.1155/2015/632902
- Legzdina, D., Romanauska, A., Nikulshin, S., Kozlovska, T., & Berzins, U. (2016). Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells. International Journal of Stem Cells, 9(1), 124–136. https://doi.org/10.15283/ijsc.2016.9.1.124
- Li, T., & Wu, Y. (2011). Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Research, 2011, 353878. https://doi.org/10.1155/2011/353878
- Li, Y., Guo, G., Li, L., Chen, F., Bao, J., Shi, Y. J., & Bu, H. (2015). Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell and Tissue Research, 360(2), 297–307. https://doi.org/10.1007/s00441-014-2055-x
- Liu, S., de Castro, L., Jin, P., Civini, S., Ren, J., Reems, J.-A., & Stroncek, D. F. (2017). Manufacturing differences affect human bone marrow stromal cell characteristics and function: Comparison of production methods and products from multiple centers. Scientific Reports, 7, 46731. https://doi.org/10.1038/srep46731
- Liu, S., Yuan, M., Hou, K., Zhang, L., Zheng, X., Zhao, B., & Guo, Q. (2012). Immune characterization of mesenchymal stem cells in human umbilical cord Wharton's jelly and derived cartilage cells. Cellular Immunology, 278(1), 35–44.
- Liu, X. B., Chen, H., Chen, H. Q., Zhu, M. F., Hu, X. Y., Wang, Y. P., & Wang, J. A. (2012). Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. Journal of Zhejiang University. Science. B, 13(8), 616–623. https://doi.org/10.1631/jzus.B1201004
- Lo, B., & Parham, L. (2009). Ethical issues in stem cell research. Endocrine Reviews, 30(3), 204–213. https://doi.org/10.1210/er.2008-0031
- Ma, L. L., Meng, F. B., Shi, P., Li, G., & Pang, X. N. (2012). Quantity and proliferation rate of mesenchymal stem cells in human cord blood during gestation. Cell Biology International, 36(4), 415–418. https://doi.org/10.1042/cbi20110173
- Maleki, M., Ghanbarvand, F., Reza Behvarz, M., Ejtemaei, M., & Ghadirkhomi, E. (2014). Comparison of mesenchymal stem cell markers in multiple human adult stem cells. International Journal of Stem Cells, 7(2), 118–126. https://doi.org/10.15283/ijsc.2014.7.2.118
- Malgieri, A., Kantzari, E., Patrizi, M. P., & Gambardella, S. (2010). Bone marrow and umbilical cord blood human mesenchymal stem cells: State of the art. International Journal of Clinical and Experimental Medicine, 3(4), 248–269.
- Manuguerra-Gagne, R., Boulos, P. R., Ammar, A., Leblond, F. A., Krosl, G., Pichette, V., & Roy, D. C. (2013). Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells, 31(6), 1136–1148. https://doi.org/10.1002/stem.1364
- Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78(12), 7634–7638. https://doi.org/10.1073/pnas.78.12.7634
- Mattiucci, D., Maurizi, G., Leoni, P., & Poloni, A. (2018). Aging- and senescence-associated changes of mesenchymal stromal cells in myelodysplastic syndromes. Cell Transplantation, 27(5), 754–764. https://doi.org/10.1177/0963689717745890
- Maurice, S., Srouji, S., & Livne, E. (2006). Isolation of progenitor cells from cord blood using adhesion matrices. Cytotechnology, 52(2), 125–137. https://doi.org/10.1007/s10616-007-9043-x
- Mazzoccoli, G., Miscio, G., Fontana, A., Copetti, M., Francavilla, M., Bosi, A., & Tarquini, R. (2016). Time related variations in stem cell harvesting of umbilical cord blood. Scientific Reports, 6, 21404–21404. https://doi.org/10.1038/srep21404
- Mead, B., Amaral, J., & Tomarev, S. (2018). Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma. Investigative Ophthalmology & Visual Science, 59(2), 702–714. https://doi.org/10.1167/iovs.17-22855
- Meligy, F. Y., Shigemura, K., Behnsawy, H. M., Fujisawa, M., Kawabata, M., & Shirakawa, T. (2012). The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cellular and Developmental Biology - Animal, 48(4), 203–215. https://doi.org/10.1007/s11626-012-9488-x
- Mennan, C., Wright, K., Bhattacharjee, A., Balain, B., Richardson, J., & Roberts, S. (2013). Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. BioMed Research International, 2013, 916136–916136, 8. https://doi.org/10.1155/2013/916136
- Meyer, L. (2018). FDA seeks permanent injunctions against two stem cell clinics. U.S. Food & Drug Administration.
- Miao, Z., Jin, J., Chen, L., Zhu, J., Huang, W., Zhao, J., & Zhang, X. (2006). Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biology International, 30(9), 681–687. https://doi.org/10.1016/j.cellbi.2006.03.009
- Moghadam, F. H., Tayebi, T., Dehghan, M., Eslami, G., Nadri, H., Moradi, A., & Barzegar, K. (2014). Differentiation of bone marrow mesenchymal stem cells into chondrocytes after short term culture in alkaline medium. International journal of hematology-oncology and stem cell research, 8(4), 12–19.
- Moraghebi, R., Kirkeby, A., Chaves, P., Rönn, R. E., Sitnicka, E., Parmar, M., & Woods, N.-B. (2017). Term amniotic fluid: An unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Research & Therapy, 8(1), 190–190. https://doi.org/10.1186/s13287-017-0582-6
- Moskowitz, D. M., Zhang, D. W., Hu, B., Le Saux, S., Yanes, R. E., Ye, Z., & Goronzy, J. J. (2017). Epigenomics of human CD8 T cell differentiation and aging. Science Immunology, 2(8), eaag0192. https://doi.org/10.1126/sciimmunol.aag0192
- Moya, A., Paquet, J., Deschepper, M., Larochette, N., Oudina, K., Denoeud, C., & Petite, H. (2018). Human mesenchymal stem cell failure to adapt to glucose shortage and rapidly use intracellular energy reserves through glycolysis explains poor cell survival after implantation. Stem Cells, 36(3), 363–376. https://doi.org/10.1002/stem.2763
- Nasef, A., Fouillard, L., El-Taguri, A., & Lopez, M. (2007). Human bone marrow-derived mesenchymal stem cells. The Libyan Journal of Medicine, 2(4), 190–201. https://doi.org/10.4176/070705
- Nasri, F., Mohtasebi, M. S., Hashemi, E., Zarrabi, M., Gholijani, N., & Sarvestani, E. K. (2018). Therapeutic efficacy of mesenchymal stem cells and mesenchymal stem cells-derived neural progenitors in experimental autoimmune encephalomyelitis. International Journal of Stem Cells, 11(1), 68–77. https://doi.org/10.15283/ijsc17052
- Noriega, D. C., Ardura, F., Hernandez-Ramajo, R., Martin-Ferrero, M. A., Sanchez-Lite, I., Toribio, B., & Garcia-Sancho, J. (2017). Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: A randomized controlled trial. Transplantation, 101(8), 1945–1951. https://doi.org/10.1097/tp.0000000000001484
- O'Brien, T. A., Tiedemann, K., & Vowels, M. R. (2006). No longer a biological waste product: Umbilical cord blood. Medical Journal of Australia, 184(8), 407–410.
- Osborne, A., Sanderson, J., & Martin, K. R. (2018). Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells. Stem Cells, 36(1), 65–78. https://doi.org/10.1002/stem.2722
- Owen, M. (1988). Marrow stromal stem cells. Journal of Cell Science. Supplement, 10, 63–76.
- Owston, H., Giannoudis, P. V., & Jones, E. (2016). Do skeletal muscle MSCs in humans contribute to bone repair? A systematic review. Injury, 47, S3–S15. https://doi.org/10.1016/S0020-1383(16)30834-8
- Pang, X., Yang, H., & Peng, B. (2014). Human umbilical cord mesenchymal stem cell transplantation for the treatment of chronic discogenic low back pain. Pain Physician, 17(4), E525–E530.
- Park, I. H., Kim, K. H., Choi, H. K., Shim, J. S., Whang, S. Y., Hahn, S. J., & Oh, I. H. (2013). Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state. Experimental and Molecular Medicine, 45, e44. https://doi.org/10.1038/emm.2013.87
- Pereira, C. L., Teixeira, G. Q., Ribeiro-Machado, C., Caldeira, J., Costa, M., Figueiredo, F., & Gonçalves, R. M. (2016). Mesenchymal stem/stromal cells seeded on cartilaginous endplates promote intervertebral disc regeneration through extracellular matrix remodeling. Scientific Reports, 6, 33836. https://doi.org/10.1038/srep33836
- Perez-Cruet, M., Beeravolu, N., McKee, C., Brougham, J., Khan, I., Bakshi, S., & Chaudhry, G. R. (2018). Potential of human nucleus pulposus-like cells derived from umbilical cord to treat degenerative disc disease. Neurosurgery, 84, 272–283. https://doi.org/10.1093/neuros/nyy012
- Pievani, A., Scagliotti, V., Russo, F. M., Azario, I., Rambaldi, B., Sacchetti, B., & Serafini, M. (2014). Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy, 16(7), 893–905. https://doi.org/10.1016/j.jcyt.2014.02.008
- Planchon, S. M., Lingas, K. T., Reese Koc, J., Hooper, B. M., Maitra, B., Fox, R. M., & Cohen, J. A. (2018). Feasibility of mesenchymal stem cell culture expansion for a phase I clinical trial in multiple sclerosis. Multiple Sclerosis Jounral- Experimental Translational Clinical, 4(1), 2055217318765288. https://doi.org/10.1177/2055217318765288
10.1177/2055217318765288 Google Scholar
- Prockop, D. J., Brenner, M., Fibbe, W. E., Horwitz, E., Le Blanc, K., Phinney, D. G., & Keating, A. (2010). Defining the risks of mesenchymal stromal cell therapy. Cytotherapy, 12(5), 576–578. https://doi.org/10.3109/14653249.2010.507330
- Quinn, C., & Flake, A. W. (2008). In vivo differentiation potential of mesenchymal stem cells: Prenatal and postnatal model systems. Transfusion Medicine and Hemotherapy, 35(3), 239–247. https://doi.org/10.1159/000129129
- Ragni, E., Viganò, M., Rebulla, P., Giordano, R., & Lazzari, L. (2013). What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: How to choose the most reliable housekeeping genes. Journal of Cellular and Molecular Medicine, 17(1), 168–180. https://doi.org/10.1111/j.1582-4934.2012.01660.x
- Ren, G., Chen, X., Dong, F., Li, W., Ren, X., Zhang, Y., & Shi, Y. (2012). Concise review: Mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Translational Medicine, 1(1), 51–58. https://doi.org/10.5966/sctm.2011-0019
- Ren, J., Ward, D., Chen, S., Tran, K., Jin, P., Sabatino, M., & Stroncek, D. F. (2018). Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum. Journal of Translational Medicine, 16, 65. https://doi.org/10.1186/s12967-018-1400-3
- Ridge, S. M., Sullivan, F. J., & Glynn, S. A. (2017). Mesenchymal stem cells: Key players in cancer progression. Molecular Cancer, 16(1), 31. https://doi.org/10.1186/s12943-017-0597-8
- Robey, P. (2017). “Mesenchymal stem cells”: Fact or fiction, and implications in their therapeutic use. F1000Research, 6, F1000 Faculty Rev-1524. https://doi.org/10.12688/f1000research.10955.1
- Roubeix, C., Godefroy, D., Mias, C., Sapienza, A., Riancho, L., Degardin, J., & Baudouin, C. (2015). Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Research & Therapy, 6, 177. https://doi.org/10.1186/s13287-015-0168-0
- Russell, A. L., Lefavor, R., Durand, N., Glover, L., & Zubair, A. C. (2018). Modifiers of mesenchymal stem cell quantity and quality. Transfusion, 58(6), 1434–1440. https://doi.org/10.1111/trf.14597
- Ryu, B., Sekine, H., Homma, J., Kobayashi, T., Kobayashi, E., Kawamata, T., & Shimizu, T. (2019). Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. Journal of Neurosurgery, 1(aop), 1–14. https://doi.org/10.3171/2018.11.jns182331
- Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., & Bianco, P. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6(6), 897–913. https://doi.org/10.1016/j.stemcr.2016.05.011
- Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis and Rheumatism, 52(8), 2521–2529. https://doi.org/10.1002/art.21212
- Samsonraj, R. M., Raghunath, M., Nurcombe, V., Hui, J. H., van Wijnen, A. J., & Cool, S. M. (2017). Concise review: Multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Translational Medicine, 6(12), 2173–2185. https://doi.org/10.1002/sctm.17-0129
- Sart, S., & Agathos, S. N. (2016). Large-scale expansion and differentiation of mesenchymal stem cells in microcarrier-based stirred bioreactors. Methods in Molecular Biology, 1502, 87–102. https://doi.org/10.1007/7651_2015_314
- Shekaran, A., Sim, E., Tan, K. Y., Chan, J. K., Choolani, M., Reuveny, S., & Oh, S. (2015). Enhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers. BMC Biotechnology, 15, 102. https://doi.org/10.1186/s12896-015-0219-8
- Shin, J., Park, H., Kim, H., Oh, S., Bae, J., Ha, H., & Lee, P. (2014). Mesenchymal stem cells enhance autophagy and increase beta-amyloid clearance in Alzheimer disease models. Autophagy, 10(1), 32–44. https://doi.org/10.4161/auto.26508
- Shin, K.-S., Na, K.-H., Lee, H.-J., Kim, D.-G., Shin, S.-J., Kim, J. K., & Kim, G. J. (2009). Characterization of fetal tissue-derived mesenchymal stem cells. International Journal of Stem Cells, 2(1), 51–58. https://doi.org/10.15283/ijsc.2009.2.1.51
- Shivaswamy, S., Bhinge, A., Zhao, Y., Jones, S., Hirst, M., & Iyer, V. R. (2008). Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biology, 6(3), e65–e65. https://doi.org/10.1371/journal.pbio.0060065
- Skoloudik, L., Chrobok, V., Kalfert, D., Koci, Z., Sykova, E., Chumak, T., & Filip, S. (2016). Human multipotent mesenchymal stromal cells in the treatment of postoperative temporal bone defect: An animal model. Cell Transplantation, 25(7), 1405–1414. https://doi.org/10.3727/096368915x689730
- Stewart, A. N., Kendziorski, G., Deak, Z. M., Brown, D. J., Fini, M. N., Copely, K. L., & Dunbar, G. L. (2017). Co-transplantation of mesenchymal and neural stem cells and overexpressing stromal-derived factor-1 for treating spinal cord injury. Brain Research, 1672, 91–105. https://doi.org/10.1016/j.brainres.2017.07.005
- Stultz, B. G., McGinnis, K., Thompson, E. E., Lo Surdo, J. L., Bauer, S. R., & Hursh, D. A. (2016). Chromosomal stability of mesenchymal stromal cells during in vitro culture. Cytotherapy, 18(3), 336–343. https://doi.org/10.1016/j.jcyt.2015.11.017
- Swamynathan, P., Venugopal, P., Kannan, S., Thej, C., Kolkundar, U., Bhagwat, S., & Balasubramanian, S. (2014). Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study. Stem Cell Research & Therapy, 5(4), 88. https://doi.org/10.1186/scrt477
- Tancharoen, W., Aungsuchawan, S., Pothacharoen, P., Markmee, R., Narakornsak, S., Kieodee, J., & Tasuya, W. (2017). Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochemistry, 119(2), 113–121. https://doi.org/10.1016/j.acthis.2016.11.009
- Trivanovic, D., Kocic, J., Mojsilovic, S., Krstic, A., Ilic, V., Djordjevic, I. O., & Bugarski, D. (2013). Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton's jelly. Srpski Arhiv za Celokupno Lekarstvo, 141(3-4), 178–186. https://doi.org/10.2298/SARH1304178T
- Tropel, P., Platet, N., Platel, J. C., Noel, D., Albrieux, M., Benabid, A. L., & Berger, F. (2006). Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells, 24(12), 2868–2876. https://doi.org/10.1634/stemcells.2005-0636
- Turgeman, G. (2015). The therapeutic potential of mesenchymal stem cells in Alzheimer's disease: Converging mechanisms. Neural Regeneration Research, 10(5), 698–699. https://doi.org/10.4103/1673-5374.156953
- Turner, L. (2017). ClinicalTrials.gov, stem cells and ‘pay-to-participate’ clinical studies. Regenerative Medicine, 12(6), 705–719. https://doi.org/10.2217/rme-2017-0015
- van Buul, G. M., Siebelt, M., Leijs, M. J., Bos, P. K., Waarsing, J. H., Kops, N., & van Osch, G. J. (2014). Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis. Journal of Orthopaedic Research, 32(9), 1167–1174. https://doi.org/10.1002/jor.22650
- Van Harmelen, V., Rohrig, K., & Hauner, H. (2004). Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism, 53(5), 632–637. https://doi.org/10.1016/j.metabol.2003.11.012
- Vishnubalaji, R., Al-Nbaheen, M., Kadalmani, B., Aldahmash, A., & Ramesh, T. (2012). Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell and Tissue Research, 347(2), 419–427. https://doi.org/10.1007/s00441-011-1306-3
- Wang, J., Ye, F., Cheng, L.-J., Shi, Y.-J., Bao, J., Sun, H.-Q., & Bu, H. (2009). Osteogenic differentiation of mesenchymal stem cells promoted by overexpression of connective tissue growth factor. Journal of Zhejiang University. Science. B, 10(5), 355–367. https://doi.org/10.1631/jzus.B0820252
- Wang, M., Yuan, Q., & Xie, L. (2018). Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells International, 2018, 3057624. https://doi.org/10.1155/2018/3057624
- Wang, Q., Yang, Q., Wang, Z., Tong, H., Ma, L., Zhang, Y., & Yuan, Z. (2016). Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy. Human Vaccines & Immunotherapeutics, 12(1), 85–96. https://doi.org/10.1080/21645515.2015.1030549
- Wang, X., Ma, S., Yang, B., Huang, T., Meng, N., Xu, L., & Wang, J. (2018). Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer's disease. Behavioural Brain Research, 339, 297–304. https://doi.org/10.1016/j.bbr.2017.10.032
- Wang, Y., Yang, J., Li, H., Wang, X., Zhu, L., Fan, M., & Wang, X. (2013). Hypoxia promotes dopaminergic differentiation of mesenchymal stem cells and shows benefits for transplantation in a rat model of Parkinson's disease. PLoS ONE, 8(1), e54296. https://doi.org/10.1371/journal.pone.0054296
- Wang, Y., Zhang, D., Shen, B., Zhang, Y., & Gu, P. (2018). Stem/progenitor cells and biodegradable scaffolds in the treatment of retinal degenerative diseases. Current Stem Cell Research & Therapy, 13(3), 160–173. https://doi.org/10.2174/1574888x13666171227230736
- Wouters, G., Grossi, S., Mesoraca, A., Bizzoco, D., Mobili, L., Cignini, P., & Giorlandino, C. (2007). Isolation of amniotic fluid-derived mesenchymal stem cells. Journal of Prenatal Medicine, 1(3), 39–40.
- Xiuying, L., Jinping, B., Xiaofeng, J., Ronggui, L., Yali, X., & Yimin, W. (2014). Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. International Journal of Molecular Medicine, 34(3), 695–704. https://doi.org/10.3892/ijmm.2014.1821
- Xu, J. (2018). Therapeutic applications of mesenchymal stem cells for systemic lupus erythematosus. Advances in Expermental Medicine Biology, 1089, 73–85. https://doi.org/10.1007/5584_2018_212
- Yang, C., Wang, G., Ma, F., Yu, B., Chen, F., Yang, J., & Wang, Q. (2018). Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Research & Therapy, 9(1), 136. https://doi.org/10.1186/s13287-018-0879-0
- Yang, Y.-H. K., Ogando, C. R., Wang See, C., Chang, T.-Y., & Barabino, G. A. (2018). Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research & Therapy, 9(1), 131–131. https://doi.org/10.1186/s13287-018-0876-3
- Young, S., Flynn, L. E., & Amsden, B. G. (2018). Adipose-derived stem cells in a resilient in situ forming hydrogel modulate macrophage phenotype. Tissue Engineering Part A, 24, 1784–1797. https://doi.org/10.1089/ten.TEA.2018.0093
- Yuan, Y., Kallos, M. S., Hunter, C., & Sen, A. (2014). Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. Journal of Tissue Engineering and Regenerative Medicine, 8(3), 210–225. https://doi.org/10.1002/term.1515
- Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., & Uccelli, A. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106(5), 1755–1761. https://doi.org/10.1182/blood-2005-04-1496
- Zhang, H., Tao, Y., Ren, S., Liu, H., Zhou, H., Hu, J., & Chen, H. (2018). Simultaneous harvesting of endothelial progenitor cells and mesenchymal stem cells from the human umbilical cord. Experimental and Therapeutic Medicine, 15(1), 806–812. https://doi.org/10.3892/etm.2017.5502
- Zhang, J., Jia, X. H., Xu, Z. W., Ding, F. P., Zhou, X., Fu, H., & Kong, D. L. (2013). Improved mesenchymal stem cell survival in ischemic heart through electroacupuncture. Chinese Journal of Integrative Medicine, 19(8), 573–581. https://doi.org/10.1007/s11655-012-1101-3
- Zhang, M., Zhang, F., Sun, J., Sun, Y., Xu, L., Zhang, D., & He, W. (2017). The condition medium of mesenchymal stem cells promotes proliferation, adhesion and neuronal differentiation of retinal progenitor cells. Neuroscience Letters, 657, 62–68. https://doi.org/10.1016/j.neulet.2017.07.053
- Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., Shi, S., & Le, A. D. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology (Baltimore, Md. : 1950), 183(12), 7787–7798. https://doi.org/10.4049/jimmunol.0902318
- Zhang, R., Liu, Y., Yan, K., Chen, L., Chen, X.-R., Li, P., & Jiang, X.-D. (2013). Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. Journal of Neuroinflammation, 10(1), 871. https://doi.org/10.1186/1742-2094-10-106
- Zhang, W., Feng, Y. L., Pang, C. Y., Lu, F. A., & Wang, Y. F. (2018). Transplantation of adipose tissue-derived stem cells ameliorates autoimmune pathogenesis in MRL/lpr mice: Modulation of the balance between Th17 and Treg. Zeitschrift für Rheumatologie, 78, 82–88. https://doi.org/10.1007/s00393-018-0450-5
- Zhang, X., Hirai, M., Cantero, S., Ciubotariu, R., Dobrila, L., Hirsh, A., & Takahashi, T. A. (2011). Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: Reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 112(4), 1206–1218. https://doi.org/10.1002/jcb.23042
- Zhao, K., Lou, R., Huang, F., Peng, Y., Jiang, Z., Huang, K., & Liu, Q. (2015). Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 21(1), 97–104. https://doi.org/10.1016/j.bbmt.2014.09.030
- Zhu, H., Xiong, Y., Xia, Y., Zhang, R., Tian, D., Wang, T., & Zou, L. (2017). Therapeutic effects of human umbilical cord-derived mesenchymal stem cells in acute lung injury mice. Scientific Reports, 7, 39889. https://doi.org/10.1038/srep39889