A simple and static preservation system for shipping retinal pigment epithelium cell sheets
Kanji Hori
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan
Search for more papers by this authorYuji Tanaka
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Search for more papers by this authorMitsuhiro Nishida
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Search for more papers by this authorNaoshi Koide
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Search for more papers by this authorCorresponding Author
Masayo Takahashi
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Correspondence
Masayo Takahashi, Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
Email: [email protected]
Search for more papers by this authorKanji Hori
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan
Search for more papers by this authorYuji Tanaka
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Search for more papers by this authorMitsuhiro Nishida
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Search for more papers by this authorNaoshi Koide
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Search for more papers by this authorCorresponding Author
Masayo Takahashi
Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
Correspondence
Masayo Takahashi, Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
Email: [email protected]
Search for more papers by this authorAbstract
The ability to move cells and tissues from bench to bedside is an essential aspect of regenerative medicine. In this study, we propose a simple and static shipping system to deliver tissue-engineered cell sheets. Notably, this system is electronic-device-free and simplified to minimize the number of packing and opening steps involved. Shipping conditions were optimized, and application and verification of the system were performed using human iPS cell-derived or fetal retinal pigment epithelium (RPE) cell sheets. The temperature of the compartments within the insulated container was stable at various conditions, and filling up the cell vessel with medium effectively prevented turbulence-induced mechanical damage to the RPE cell sheets. Furthermore, no abnormal changes were observed in RPE morphology, transepithelial electrical resistance, or mRNA expression after transit by train and car. Taken together, our simple shipping system has the potential to minimize the costs and human error associated with bench to bedside tissue transfer. This specially designed regenerative tissue shipping system, validated for use in this field, can be used without any special training. This study provides a procedure for easily sharing engineered tissues with the goal of promoting collaboration between laboratories and hospitals and enhancing patient care.
CONFLICTS OF INTEREST
J.K. is an employee of Sanplatec Co., Ltd.
Supporting Information
Filename | Description |
---|---|
term2805-sup-0001-supplementary_information.docxWord 2007 document , 23.8 KB |
Table S1. The numeric data of all 11 trials |
term2805-sup-0002-sf1.tifTIFF image, 527.5 KB |
Figure S1. The results of temperature load test (50°C and 0°C) |
term2805-sup-0003-sf12.tifTIFF image, 208.8 KB |
Figure S2. The temperature curve when temperature adjustment failed |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Belzer, F. O., & Southard, J. H. (1988). Principles of solid-organ preservation by cold storage. Transplantation, 45, 673–676. https://doi.org/10.1097/00007890-198804000-00001
- Berendsen, T. A., Bruinsma, B. G., Puts, C. F., Saeidi, N., Usta, O. B., Uygun, B. E., … Uygun, K. (2014). Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nature Medicine, 20, 790–793. https://doi.org/10.1038/nm.3588
- Blenkinsop, T. A., Saini, J. S., Maminishkis, A., Bharti, K., Wan, Q., Banzon, T., … Stern, J. H. (2015). Human adult retinal pigment epithelial stem cell–derived RPE monolayers exhibit key physiological characteristics of native tissue. Investigative Ophthalmology & Visual Science, 56, 7085–7099. https://doi.org/10.1167/iovs.14-16246
- Brettschneider, L., Bell, P. R., Martin, A. J. Jr., Tarr, J. S., Taylor, P. D., & Starzl, T. E. (1969). Conservation of the liver. Transplantation Proceedings, 1, 132–137.
- Chung, Y., Klimanskaya, I., Becker, S., Li, T., Maserati, M., Lu, S. J., … Lanza, R. (2008). Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell, 2, 113–117. https://doi.org/10.1016/j.stem.2007.12.013
- Falco, M. (2009). January 23. FDA approves human embryonic stem cell study. Retrieved from http://www.cnn.com/2009/HEALTH/01/23/stem.cell/
- Giwa, S., Lewis, J. K., Alvarez, L., Langer, R., Roth, A. E., Church, G. M., … Toner, M. (2017). The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 35, 530–542. https://doi.org/10.1038/nbt.3889
- Hosokawa, Y., Hagiyama, M., Iino, T., Murakami, Y., & Ito, A. (2011). Noncontact estimation of intercellular breaking force using a femtosecond laser impulse quantified by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 108, 1777–1782. https://doi.org/10.1073/pnas.1006847108
- Iino, T., Hagiyama, M., Furuno, T., Ito, A., & Hosokawa, Y. (2016). Time-course statistical evaluation of intercellular adhesion maturation by femtosecond laser impulse. Biophysical Journal, 111, 2255–2262. https://doi.org/10.1016/j.bpj.2016.09.044
- Kamao, H., Mandai, M., Okamoto, S., Sakai, N., Suga, A., Sugita, S., … Takahashi, M. (2014). Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2, 205–218. https://doi.org/10.1016/j.stemcr.2013.12.007
- Kørbling, M., & Estrov, Z. (2003). Adult stem cells for tissue repair—A new therapeutic concept? The New England Journal of Medicine, 349, 570–582. https://doi.org/10.1056/nejmra022361
- Li, M., & Izpisuz Belmonte, J. C. (2016). Looking to the future following 10 years of induced pluripotent stem cell technologies. Nature Protocols, 11, 1579–1585. https://doi.org/10.1038/nprot.2016.108
- Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., … Takahashi, M. (2017). Autologous induced stem-cell-derived retinal cells for macular degeneration. The New England Journal of Medicine, 376, 1038–1046. https://doi.org/10.1056/nejmoa1608368
- Matsuno, N., & Kobayashi, E. (2013). Challenges in machine perfusion preservation for liver grafts from donation after circulatory death. Transplantation Research, 2, 19. https://doi.org/10.1186/2047-1440-2-19
- Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., … Yamanaka, S. (2007). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26, 101–106. https://doi.org/10.1038/nbt1374
- Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., … Sasai, Y. (2012). Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 10, 771–785. https://doi.org/10.1016/j.stem.2012.05.009
- Nozaki, T., Yamato, M., Inuma, T., Nishida, K., & Okano, T. (2008). Transportation of transplantable cell sheets fabricated with temperature-responsive culture surfaces for regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2, 190–195. https://doi.org/10.1002/term.80
- Oie, Y., Nozaki, T., Takayanagi, H., Hara, S., Hayashi, R., Takeda, S., … Nishida, K. (2014). Development of a cell sheet transportation technique for regenerative medicine. Tissue Engineering. Part C, Methods, 20, 373–382. https://doi.org/10.1089/ten.tec.2013.0266
- Osakada, F., Ikeda, H., Mandai, M., Wataya, T., Watanabe, K., Yoshimura, N., … Takahashi, M. (2008). Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nature Biotechnology, 26, 215–224. https://doi.org/10.1038/nbt1384
- Sancho, A., Vandersmissen, I., Craps, S., Luttun, A., & Groll, J. (2017). A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Scientific Reports, 7, 46152. https://doi.org/10.1038/srep46152
- Sanplatec Corp. (2017). iP-TEC live transport device and constant temperature transport BOX. Retrieved from http://www.sanplatec-global.com/
- Schmidt-Erfurth, U., Kaiser, P. K., Korobelnik, J. F., Brown, D. M., Chong, V., Nguyen, Q. D., … Heier, J. S. (2014). Intravitreal aflibercept injection for neovascular age-related macular degeneration: Ninety-six-week results of the VIEW studies. Ophthalmology, 121, 193–201. https://doi.org/10.1016/j.ophtha.2013.08.011
- Schwartz, S. D., Hubschman, J. P., Heilwell, G., Franco-Cardenas, V., Pan, C. K., Ostrick, R. M., … Lanza, R. (2012). Embryonic stem cell trials for macular degeneration: A preliminary report. The Lancet, 379, 713–720. https://doi.org/10.1016/s0140-6736(12)60028-2
- Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z., … Lanza, R. (2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: Follow-up of two open-label phase 1/2 studies. The Lancet, 385, 509–516. https://doi.org/10.1016/s0140-6736(14)61376-3
- Schwartz, S. D., Tan, G., Hosseini, H., & Nagiel, A. (2016). Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Investigative Ophthalmology & Visual Science, 57, ORSFc1–ORSFc9. https://doi.org/10.1167/iovs.15-18681
- St Peter, S. D., Imber, C. J., Lopez, I., Hughes, D., & Friend, P. J. (2002). Extended preservation of non-heart-beating donor livers with normothermic machine perfusion. The British Journal of Surgery, 89, 609–616. https://doi.org/10.1046/j.1365-2168.2002.02052.x
- Stewart, M. W. (2015). Individualized treatment of neovascular age-related macular degeneration: what are patients gaining? Or losing? Journal of Clinical Medicine, 4, 1079–1101. https://doi.org/10.3390/jcm4051079
- Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872. https://doi.org/10.1016/j.cell.2007.11.019
- Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147. https://doi.org/10.1126/science.282.5391.1145
- Tolboom, H., Pouw, R. E., Izamis, M. L., Milwid, J. M., Sharma, N., Soto-Gutierrez, A., … Yarmush, M. L. (2009). Recovery of warm ischemic rat liver grafts by normothermic extracorporeal perfusion. Transplantation, 87, 170–177. https://doi.org/10.1097/tp.0b013e318192df6b
- van der Plaats, A., Maathuis, M. H., 'T Hart, N. A., Bellekom, A. A., Hofker, H. S., van der Houwen, E. B., … Rakhorst, G. (2006). The Groningen hypothermic liver perfusion pump: Functional evaluation of a new machine perfusion system. Annals of Biomedical Engineering, 34, 1924–1934. https://doi.org/10.1007/s10439-006-9207-4
- Vergano, D. (2010). November 22. Second human embryonic stem cell clinical trial to start. Retrieved from http://web.archive.org/web/20160116213356/http://content.usatoday.com/communities/sciencefair/post/2010/11/second-human-embryonic-stem-cell-clinical-trial-to-start/1#.WUDtQMbANBx
- World Health Organization (WHO) (2017). Vision impairment and blindness. Retrieved from http://www.who.int/mediacentre/factsheets/fs282/en/
- Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., … Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920. https://doi.org/10.1126/science.1151526