Metal-Free Alkane Functionalization by Organocatalytic and Photoinduced Methods
Sha Zhao
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorXiuli Wu
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorZhengtao Xu
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorSongyan Ye
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorCorresponding Author
Xingxing Wu
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorSha Zhao
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorXiuli Wu
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorZhengtao Xu
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorSongyan Ye
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorCorresponding Author
Xingxing Wu
State Key Laboratory of Green Pesticide, Fine Chemical Research and Development Center, Guizhou University, Huaxi District, Guiyang, 550025 China
Search for more papers by this authorAbstract
Transforming alkane C−H bonds into carbon-carbon and carbon-heteroatom bonds represents a paramount objective in synthetic chemistry with significant implications for sustainable production. Although transition-metal catalysts such as Pd, Rh etc have dominated this field, recent breakthroughs in metal-free approaches leveraging small-molecule catalysts or photogenerated intermediates have emerged as efficient and sustainable alternatives. These approaches facilitate precise C−H bond activation and selective formation of C−X (e. g., C, halogen, N, O) bonds under mild conditions, thereby paving a promising avenue for eco-friendly alkane transformations. This review provides an overview of recent advancements in homogeneous metal-free alkane functionalization, focusing on organocatalytic and photoinduced strategies, with the aim of enhancing mechanistic understanding and inspiring the development of innovative synthetic methodologies for the conversion of alkanes into high-value compounds.
References
- 1
- 1aA. E. Shilov, G. B. Shul'pin, Chem. Rev. 1997, 97, 2879–2932;
- 1bS. Murai, Activation of Unreactive Bonds and Organic Synthesis. New York, Springer, 1999;
10.1007/3-540-68525-1 Google Scholar
- 1cG. Dyker, Angew. Chem. 1999, 111, 1808–1822;
10.1002/(SICI)1521-3757(19990614)111:12<1808::AID-ANGE1808>3.0.CO;2-V Google ScholarAngew. Chem. Int. Ed. 1999, 38, 1698–1712;10.1002/(SICI)1521-3773(19990614)38:12<1698::AID-ANIE1698>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 1dY. Fujiwara, K. Takaki, Y. Taniguchi, Synlett 1996, 1996, 591–599;
- 1eM. Gupta, C. Hagen, W. C. Kaska, R. E. Cramer, C. M. Jensen, J. Am. Chem. Soc. 1997, 119, 840–841;
- 1fC. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633–639.
- 2
- 2aK. Godula, D. Sames, Science 2006, 312, 67–72;
- 2bR. G. Bergman, Nature 2007, 446, 391–393;
- 2cH. M. Davies, D. Morton, Chem. Soc. Rev. 2011, 40, 1857–1869;
- 2dK. M. Engle, T. S. Mei, M. Wasa, J. Q. Yu, Acc. Chem. Res. 2012, 45, 788–802;
- 2eC. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780–1824;
- 2fT. Newhouse, P. S. Baran, Angew. Chem. 2011, 123, 3422–3435,
10.1002/ange.201006368 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 3362–3374;
- 2gS. Y. Zhang, F. M. Zhang, Y. Q. Tu, Chem. Soc. Rev. 2011, 40, 1937–1949;
- 2hJ. L. Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012, 45, 911–922;
- 2iM. C. White, Science 2012, 335, 807–809;
- 2jG. Rouquet, N. Chatani, Angew. Chem. 2013, 125, 11942–11959;
10.1002/ange.201301451 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 11726–11743;
- 2kA. Hu, J. J. Guo, H. Pan, Z. Zuo, Science 2018, 361, 668–672;
- 2lT. J. Fazekas, J. W. Alty, E. K. Neidhart, A. S. Miller, F. A. Leibfarth, E. J. Alexanian, Science 2022, 375, 545–550;
- 2mI. B. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan, Nature 2018, 560, 70–75;
- 2nG. Laudadio, Y. Deng, K. van der Wal, D. Ravelli, M. Nuño, M. Fagnoni, D. Guthrie, Y. Sun, T. Noël, Science 2020, 369, 92–96.
- 3
- 3aB. A. Arndtsen, R. G. Bergman, T. A. Mobley, T. H. Peterson, Acc. Chem. Res. 1995, 28, 154–162;
- 3bA. Gupta, J. Kumar, A. Rahaman, A. K. Singh, S. Bhadra, Tetrahedron 2021, 98, 132415;
- 3cW. Gutekunst, P. Baran, Chem. Soc. Rev. 2011, 40, 1976–1991;
- 3dJ. Yamaguchi, A. Yamaguchi, K. Itami, Angew. Chem. 2012, 124, 9092–9142, Angew. Chem. Int. Ed. 2012, 51, 8960–9009, J. Hartwig, M. Larsen, ACS Cent. Sci. 2016, 2, 281–292;
- 3eL. Wang, K. Thai, M. Gravel, Org. Lett. 2009, 11, 891–893;
- 3fS. Langdon, C. Legault, M. Gravel, J. Org. Chem. 2015, 80, 3597–3610;
- 3gJ. Feng, D. Du, Tetrahedron 2021, 100, 132456;
- 3hS. Mondal, S. Yetra, S. Mukherjee, A. Biju, Acc. Chem. Res. 2019, 52, 425–436;
- 3iT. Dasab, A. Biju, Chem. Commun. 2020, 56, 8537–8552;
- 3jS. Barik, A. Biju, Chem. Commun. 2020, 56, 15484–15495;
- 3kR. Y. Tang, Y. X. Xie, Y. L. Xie, J. N. Xiang, J. H. Li, Chem. Commun. 2011, 47, 12867–12869;
- 3lJ. Zhao, W. Zhou, J. Han, G. Li, Y. Pan, Tetrahedron Lett. 2013, 54, 6507–6510;
- 3mJ. Zhao, H. Fang, W. Zhou, J. Han, Y. Pan, J. Org. Chem. 2014, 79, 3847–3855;
- 3nD. Liu, C. Liu, H. Li, A. Lei, Angew. Chem. 2013, 16, 4453–4456, Angew. Chem. Int. Ed. 2013, 52, 4453–4456;
- 3oZ. Li, C. J. Li, J. Am. Chem. Soc. 2006, 128, 56–57;
- 3pZ. Li, L. Cao, C. J. Li, Angew. Chem. 2007, 119, 6625–6627; Angew. Chem. Int. Ed. 2007, 46, 6505–6507;
- 3qS. L. Zhou, L. N. Guo, S. Wang, X. H. Duan, Chem. Commun. 2014, 50, 3589–3591;
- 3rZ. Li, C. J. Li, J. Am. Chem. Soc. 2005, 127, 3672–3673.
- 4
- 4aJ. Ritz, H. Fuchs, H. Kieczka, W. C. Moran, Caprolactam. In Ullmann's Encyclopedia of Industrial Chemistry, W. Gerhartz (Eds.), Wiley-VCH: Weinheim, 1986;
- 4bP. Tang, D. Ma, Z. Wu, Q. Zhu, Energy Environ. Sci.: EES 2014, 7, 2580–2591.
- 5
- 5aB. Liu, A. Romine, C. Rubel, K. Engle, B. Shi, Chem. Rev. 2021, 121, 14957–15074;
- 5bJ. He, M. Wasa, K. Chan, Q. Shao, J. Yu, Chem. Rev. 2017, 117, 8754–8786;
- 5cH. Davies, K. Liao, Nat. Chem. Rev. 2019, 3, 347–360;
- 5dS. Rej, Y. Ano, N. Chatani, Chem. Rev. 2020, 120, 1788–1887;
- 5eC. Malapit, M. Prater, J. Cabrera-Pardo, M. Li, T. Pham, T. McFadden, S. Blank, S. Minteer, Chem. Rev. 2022, 122, 3180–3218;
- 5fA. Chan, I. Perry, N. Bissonnette, B. Buksh, G. Edwards, L. Frye, O. Garry, M. Lavagnino, B. Li, Y. Liang, E. Mao, A. Millet, J. Oakley, N. Reed, H. Sakai, C. Seath, D. MacMillan, Chem. Rev. 2022, 122, 1485–1542;
- 5gK. Cheung, S. Sarkar, V. Gevorgyan, Chem. Rev. 2022, 122, 1543–1625;
- 5hL. Novaes, J. Liu, Y. Shen, L. Lu, J. Meinhardt, S. Lin, Chem. Soc. Rev. 2021, 50, 7941–8002;
- 5iJ. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. 2012, 124, 9092–9142, Angew. Chem. Int. Ed. 2012, 51, 8960–9009.
- 6
- 6aY. Qin, L. Zhu, S. Luo, Chem. Rev. 2017, 117, 9433–9520;
- 6bJ. Zhao, J. Han, Metal-Free Functionalization of Alkanes, in Alkane Functionalization, Eds: A. J. L. Pombeiro, M. F. C. Guedes da Silva, Wiley-VCH, Weinheim, 2018, pp. 503–521;
- 6cA. A. Fokin, P. R. Schreiner, Adv. Synth. Catal. 2003, 345, 1035–1052;
- 6dS. Barik, A. T. Biju, Handbook of CH-Functionalization, Wiley-VCH, Weinheim, 2022, 1–39;
- 6eF. Lu, F. Su, S. Pan, X. Wu, X. Wu, Y. R. Chi, Chem. Eur. J. 2024, 30, e202401811;
- 6fJ. Sheng, B. Yan, W. D. Lu, B. Qiu, X. Q. Gao, D. Wang, A. H. Lu, Chem. Soc. Rev. 2021, 50, 1438–1468.
- 7
- 7aY. Jiang, Y. Fan, S. Li, Z. Tang, CCS Chem. 2023, 5, 30–54;
- 7bN. R. Conceição, K. T. Mahmudov, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Coord. Chem. Rev. 2025, 522, 216175;
- 7cL. Chang, S. Wang, Q. An, L. Liu, H. Wang, Y. Li, K. Feng, Z. Zuo, Chem. Sci. 2023, 14, 6841–6859;
- 7dM. Mar Díaz-Requejo, P. J. Pérez*, Chem. Rev. 2008, 108, 3379–3394;
- 7eP. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192–2452;
- 7fK. Liao, S. Negretti, D. G. Musaev, J. Bacsa, H. M. L. Davies, Nature 2016, 533, 230–234;
- 7gG. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110, 681–703.
- 8R. A. Doohan, N. W. A. Geraghty, Green Chem. 2005, 7, 91–96.
- 9R. A. Doohan, J. J. Hannan, N. W. A. Geraghty, Org. Biomol. Chem. 2006, 4, 942–952.
- 10S. Kamijo, G. Takao, K. Kamijo, T. Tsuno, K. Ishiguro, T. Murafuji, Org. Lett. 2016, 18, 4912–4915.
- 11S. Kamijo, K. Kamijo, K. Maruoka, T. Murafuji, Org. Lett. 2016, 18, 6516–6519.
- 12S. Kamijo, G. Takao, K. Kamijo, M. Hirota, K. Tao, T. Murafuji, Angew. Chem. 2016, 128, 9847–9851,
10.1002/ange.201603810 Google ScholarAngew. Chem. Int. Ed. 2016, 55, 9695–9699.
- 13T. Hoshikawa, M. Inoue, Chem. Sci. 2013, 4, 3118–3123.
- 14X. Shao, X. Wu, S. Wu, C. Zhu, Org. Lett. 2020, 22, 7450–7454.
- 15W. Lee, S. Jung, M. Kim, S. Hong, J. Am. Chem. Soc. 2021, 143, 3003–3012.
- 16H. P. Deng, Q. Zhou, J. Wu, Angew. Chem. 2018, 130, 12843–12847, Angew. Chem. Int. Ed. 2018, 57, 12661–12665.
- 17M. Wu, Z. Wu, H. T. Ang, B. Wang, T. Liu, S. Wu, Z. Lei, M. W. Liaw, S. Chanmungkalakul, C. Lee, ACS Catal. 2024, 14, 9364–9373.
- 18P. Jia, Q. Li, W. C. Poh, H. Jiang, H. Liu, H. Deng, J. Wu, Chem 2020, 6, 1766–1776.
- 19M. Schlegel, S. Qian, D. A. Nicewicz, ACS Catal. 2022, 12, 10499–10505.
- 20B. Wang, C. Ascenzi Pettenuzzo, J. Singh, G. E. Mccabe, L. Clark, R. Young, J. Pu, Y. Deng, ACS Catal. 2022, 12, 10441–10448.
- 21F. Su, F. Lu, K. T. L. L. C. L. W. R. Chi, Angew. Chem. 2023, 62, 1433–7851, Angew. Chem. Int. Ed. 2023, 62, e202310072.
- 22
- 22aJ. O. Straub, J. Le Roux, D. Tedoldi, Water 2023, 15, 2430;
- 22bA. A. Festa, O. A. Storozhenko, L. G. Voskressensky, E. V. Van der Eycken, Chem. Soc. Rev. 2023, 52, 8678–8698;
- 22cD. Cantillo, C. O. Kappe, React. Chem. Eng. 2017, 2, 7–19;
- 22dH. Tu, S. Zhu, F.-L. Qing, L. Chu, Tetrahedron Lett. 2018, 59, 173–179.
- 23
- 23aN. A. Mcgrath, M. Brichacek, J. T. Njardarson, J. Chem. Educ. 2010, 87, 1348–1349;
- 23bG. Siegemund, W. Schwertfeger, A. Feiring, B. Smart, F. Behr, H. Vogel, B. McKusick, P. Kirsch, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2016;
- 23cK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 23dQ. Cheng, T. Ritter, Trends Chem. 2019, 1, 461–470;
- 23eB. Lantaño, A. Postigo, Org. Biomol. Chem. 2017, 15, 9954–9973.
- 24J. B. Xia, C. Zhu, C. Chen, Chem. Commun. 2014, 50, 11701–11704.
- 25S. Yakubov, W. J. Stockerl, X. Tian, A. Shahin, M. J. P. Mandigma, R. M. Gschwind, J. P. Barham, Chem. Sci. 2022, 13, 14041–14051.
- 26
- 26aC. Chen, Org. Biomol. Chem. 2016, 14, 8641–8647;
- 26bL. Han, J. Xia, L. You, C. Chen, Tetrahedron 2017, 73, 3696–3701.
- 27R. K. Quinn, Z. A. Könst, S. E. Michalak, Y. Schmidt, A. R. Szklarski, A. R. Flores, S. Nam, D. A. Horne, C. D. Vanderwal, E. J. Alexanian, J. Am. Chem. Soc. 2016, 138, 696–702.
- 28C. W. Kee, K. M. Chan, M. W. Wong, C. H. Tan, Asian J. Org. Chem. 2014, 3, 317–317; Asian J. Org. Chem. 2013, 3, 536–544.
- 29V. A. Schmidt, R. K. Quinn, A. T. Brusoe, E. J. Alexanian, J. Am. Chem. Soc. 2014, 136, 14389–14392.
- 30N. A. Hirscher, N. Ohri, Q. Yang, J. Zhou, J. M. Anna, E. J. Schelter, K. I. Goldberg, J. Am. Chem. Soc. 2021, 143, 19262–19267.
- 31B. H. Brodsky, J. Du Bois, J. Am. Chem. Soc. 2005, 127, 15391–15393.
- 32C. J. Pierce, M. K. Hilinski, Org. Lett. 2014, 16, 6504–6507.
- 33K. Ohkubo, A. Fujimoto, S. Fukuzumi, Chem. Commun. 2011, 47, 8515–8517.
- 34S. Kamijo, M. Azami, I. T. Murafuji, Adv. Synth. Catal. 2024, 366, 1375–1381.
- 35J. M. Paolillo, A. D. Duke, E. S. Gogarnoiu, D. E. Wise, M. Parasram, J. Am. Chem. Soc. 2023, 145, 2794–2799.
- 36W. L. Czaplyski, C. G. Na, E. J. Alexanian, J. Am. Chem. Soc. 2016, 138, 13854–13857.
- 37Y. Amaoka, S. Kamijo, T. Hoshikawa, M. Inoue, J. Org. Chem. 2012, 77, 9959–9969.
- 38K. A. Margrey, W. L. Czaplyski, D. A. Nicewicz, E. J. Alexanian, J. Am. Chem. Soc. 2018, 140, 4213–4217.
- 39C. Shu, A. Noble, V. K. Aggarwal, Nature 2020, 586, 714–719.