Recent Development of Electrolytes for Aqueous Organic Redox Flow Batteries (Aorfbs): Current Status, Challenges, and Prospects
Dr. Muhammad Mansha
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAsif Ayub
Department of Chemistry, Islamia University Bahawalpur, 63100 Punjab, Pakistan
Search for more papers by this authorIbad Ali Khan
Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Shahid Ali
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Atif Saeed Alzahrani
Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Majad Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Department of Chemistry, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Muhammad Arshad
Department of Chemistry, Islamia University Bahawalpur, 63100 Punjab, Pakistan
Search for more papers by this authorDr. Abdul Rauf
Department of Chemistry, Islamia University Bahawalpur, 63100 Punjab, Pakistan
Search for more papers by this authorCorresponding Author
Dr. Safyan Akram Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Muhammad Mansha
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAsif Ayub
Department of Chemistry, Islamia University Bahawalpur, 63100 Punjab, Pakistan
Search for more papers by this authorIbad Ali Khan
Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Shahid Ali
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Atif Saeed Alzahrani
Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Majad Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Department of Chemistry, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorDr. Muhammad Arshad
Department of Chemistry, Islamia University Bahawalpur, 63100 Punjab, Pakistan
Search for more papers by this authorDr. Abdul Rauf
Department of Chemistry, Islamia University Bahawalpur, 63100 Punjab, Pakistan
Search for more papers by this authorCorresponding Author
Dr. Safyan Akram Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAbstract
In recent years, aqueous organic redox flow batteries (AORFBs) have attracted considerable attention due to advancements in grid-level energy storage capacity research. These batteries offer remarkable benefits, including outstanding capacity retention, excellent cell performance, high energy density, and cost-effectiveness. The organic electrolytes in AORFBs exhibit adjustable redox potentials and tunable solubilities in water. Previously, various types of organic electrolytes, such as quinones, organometallic complexes, viologens, redox-active polymers, and organic salts, were extensively investigated for their electrochemical performance and stability. This study presents an overview of recently published novel organic electrolytes for AORFBs in acidic, alkaline, and neutral environments. Furthermore, it delves into the current status, challenges, and prospects of AORFBs, highlighting different strategies to overcome these challenges, with special emphasis placed on their design, composition, functionalities, and cost. A brief techno-economic analysis of various aqueous RFBs is also outlined, considering their potential scalability and integration with renewable energy systems.
References
- 1“Outlook for electricity – World Energy Outlook 2022 – Analysis – IEA,” October 2022.
- 2P. A. Kharecha, J. E. Hansen, Environ. Sci. Technol. 2013, 47, 4889–4895.
- 3J. Skea, S. Nishioka, Clim. Policy 2008, 8, S5–S16.
- 4D. Bogdanov, M. Ram, A. Aghahosseini, A. Gulagi, A. S. Oyewo, M. Child, U. Caldera, K. Sadovskaia, J. Farfan, L. De Souza Noel Simas Barbosa, M. Fasihi, S. Khalili, T. Traber, C. Breyer, Energy 2021, 227, 120467.
- 5P. Heptonstall, M. Leach, T. Green, J. Skea, R. Gross, P. Heptonstall, M. Leach, D. Anderson, T. Green, J. Skea Obe, Proceedings of the Institution of Civil Engineers-Energy 2015, 160, 31–41, https://doi.org/10.1680/ener.2007.160.1.31.
10.1680/ener.2007.160.1.31 Google Scholar
- 6United Nations, Progress towards the Sustainable Development Goals, 2022.
- 7H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Prog. Nat. Sci. 2009, 19, 291–312.
- 8D. Rastler, EPRI Project Manager Electricity Energy Storage Technology Options, 2010.
- 9P. C. Butler, Battery Energy Storage for Utility Applications: Phase I – Opportunities Analysis, Albuquerque, NM, and Livermore, CA (United States), 1994.
- 10D. M. R. Abbas A. Akhil, Georgianne Huff, A. B. Currier, B. C. Kaun, W. D. G. Stella Bingqing Chen, Andrew L. Cotter, D. T. Bradshaw, DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550, 2013.
- 11P. Alotto, M. Guarnieri, F. Moro, Renewable Sustainable Energy Rev. 2014, 29, 325–335.
- 12E. S. Beh, D. De Porcellinis, R. L. Gracia, K. T. Xia, R. G. Gordon, M. J. Aziz, ACS Energy Lett. 2017, 2, 639–644.
- 13O. Schmidt, S. Melchior, A. Hawkes, I. Staffell, Joule 2019, 3, 81–100.
- 14A. Clemente, R. Costa-Castelló, Energies 2020, 13, 4514.
- 15L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, Adv. Energy Mater. 2011, 1, 394–400.
- 16R. M. Darling, K. G. Gallagher, J. A. Kowalski, S. Ha, F. R. Brushett, Energy Environ. Sci. 2014, 7, 3459–3477.
- 17J. Huang, L. Su, J. A. Kowalski, J. L. Barton, M. Ferrandon, A. K. Burrell, F. R. Brushett, L. Zhang, J. Mater. Chem. A 2015, 3, 14971–14976.
- 18T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energy Mater. 2016, 6, 1501449.
- 19F. R. Brushett, J. T. Vaughey, A. N. Jansen, Adv. Energy Mater. 2012, 2, 1390–1396.
- 20J. Rodriguez, “Going with the flow: An introduction to redox flow batteries – Solar Choice,” can be found under https://www.solarchoice.net.au/blog/news/an-introduction-to-flow-batteries-030315/, 2015.
- 21X. Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, D. Jang, Int. J. Energy Res. 2019, 43, 6599–6638.
- 22C. Sun, H. Zhang, ChemSusChem 2022, 15, e202101798.
- 23M. C. Wu, T. S. Zhao, H. R. Jiang, Y. K. Zeng, Y. X. Ren, J. Power Sources 2017, 355, 62–68.
- 24Z. Yuan, Y. Yin, C. Xie, H. Zhang, Y. Yao, X. Li, Z. Z. Yuan, Y. B. Yin, C. X. Xie, H. M. Zhang, X. F. Li, Y. Yao, Adv. Mater. 2019, 31, 1902025.
- 25K. Lin, R. Gómez-Bombarelli, E. S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M. J. Aziz, R. G. Gordon, Nat. Energy 2016, 1, 16102.
- 26J. Chai, A. Lashgari, J. “Jimmy” Jiang, Electroactive Materials for Next-Generation Redox Flow Batteries: From Inorganic to Organic, in Clean Energy Materials, 2020, pp. 1–47.
- 27H. Zhang, Polysulfide-bromine flow batteries (PBBs) for medium- and large-scale energy storage, in Adv. Batter. Mediu. Large-Scale Energy Storage Types Appl. 2015, 317–327.
- 28W. Wang, V. Sprenkle, Nat. Chem. 2016, 8, 204–206.
- 29M. Mansha, A. Anam, S. Akram Khan, A. Saeed Alzahrani, M. Khan, A. Ahmad, M. Arshad, S. Ali, Chem. Rec. 2023, DOI 10.1002/tcr.202300233.
- 30I. Iwakiri, T. Antunes, H. Almeida, J. P. Sousa, R. B. Figueira, A. Mendes, Energies 2021, 14, 5643.
- 31F. Pan, Q. Wang, D. J. Mcphee, S. Manzhos, Mol. 2015, 20, 20499–20517.
- 32A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, Q. Liu, J. Appl. Electrochem. 2011, 41, 1137–1164.
- 33G. L. Soloveichik, Chem. Rev. 2015, 115, 11533–11558.
- 34W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater. 2013, 23, 970–986.
- 35P. Leung, X. Li, C. Ponce De León, L. Berlouis, C. T. J. Low, F. C. Walsh, RSC Adv. 2012, 2, 10125–10156.
- 36X. Yuan, M. Huang, Z. Liang, Int. J. Heat Mass Transfer 2023, 205, 123924.
- 37Q. Xu, F. Zhang, L. Xu, P. Leung, C. Yang, H. Li, Renewable Sustainable Energy Rev. 2017, 67, 574–580.
- 38M. H. Osman, A. A. Shah, F. C. Walsh, Biosens. Bioelectron. 2011, 26, 3087–3102.
- 39M. H. Osman, A. A. Shah, F. C. Walsh, Biosens. Bioelectron. 2010, 26, 953–963.
- 40L. Zhang, R. Feng, W. Wang, G. Yu, Nat. Rev. Chem. 2022, 6, 524–543.
- 41B. Hu, M. Hu, J. Luo, T. L. Liu, Adv. Energy Mater. 2022, 12, 2102577.
- 42V. Singh, S. Kim, J. Kang, H. R. Byon, Nano Res. 2019, 12, 1988–2001.
- 43A. Hollas, X. Wei, V. Murugesan, Z. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, Nat. Energy 2018, 3, 508–514.
- 44Y. Ding, C. Zhang, L. Zhang, Y. Zhou, G. Yu, Chem. Soc. Rev. 2018, 47, 69–103.
- 45M. Li, Z. Rhodes, J. R. Cabrera-Pardo, S. D. Minteer, Sustain. Energy Fuels 2020, 4, 4370–4389.
- 46X. Wei, W. Pan, W. Duan, A. Hollas, Z. Yang, B. Li, Z. Nie, J. Liu, D. Reed, W. Wang, V. Sprenkle, ACS Energy Lett. 2017, 2, 2187–2204.
- 47D. G. Kwabi, K. Lin, Y. Ji, E. F. Kerr, M. A. Goulet, D. De Porcellinis, D. P. Tabor, D. A. Pollack, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Joule 2018, 2, 1894–1906.
- 48Y. Ji, M. A. M. M.-A. A. Goulet, D. A. Pollack, D. G. Kwabi, S. Jin, D. De Porcellinis, E. F. Kerr, R. G. Gordon, M. J. Aziz, Y. Ji, E. F. Kerr, R. G. Gordon, M. A. M. M.-A. A. Goulet, D. G. Kwabi, S. Jin, D. De Porcellinis, M. J. Aziz Harvard John A Paulson, D. A. Pollack, Adv. Energy Mater. 2019, 9, 1900039.
- 49M. R. Gerhardt, L. Tong, R. Gómez-Bombarelli, Q. Chen, M. P. Marshak, C. J. Galvin, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, M. R. Gerhardt, Q. Chen, R. G. Gordon, M. J. Aziz Harvard John A Paulson, L. Tong, R. Gómez-Bombarelli, A. Aspuru-Guzik, M. P. Marshak, C. J. Galvin, Adv. Energy Mater. 2017, 7, 1601488.
- 50B. Hu, J. Luo, M. Hu, B. Yuan, T. L. Liu, Angew. Chem. 2019, 131, 16782–16789.
10.1002/ange.201907934 Google Scholar
- 51T. Janoschka, N. Martin, M. D. Hager, U. S. Schubert, Angew. Chem. Int. Ed. 2016, 55, 14427–14430.
- 52C. Debruler, B. Hu, J. Moss, J. Luo, T. L. Liu, ACS Energy Lett. 2018, 3, 663–668.
- 53J. Luo, W. Wu, C. Debruler, B. Hu, M. Hu, T. L. Liu, J. Mater. Chem. A 2019, 7, 9130–9136.
- 54F. Zhu, W. Guo, Y. Fu, Chem. Asian J. 2023, 18, e202201098, DOI 10.1002/asia.202201098.
- 55Y. Liu, S. Lu, S. Chen, H. Wang, J. Zhang, Y. Xiang, ACS Appl. Energ. Mater. 2019, 2, 2469–2474.
- 56Q. Chen, Y. Lv, Z. Yuan, X. Li, G. Yu, Z. Yang, T. Xu, Adv. Funct. Mater. 2022, 32, 1–17.
- 57Y. Y. Yu, Y. Zhang, L. Peng, Sci. Total Environ. 2022, 838, 156501.
- 58M. R. Gerhardt, L. Tong, R. Gómez-Bombarelli, Q. Chen, M. P. Marshak, C. J. Galvin, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Adv. Energy Mater. 2017, 7, p1601488, DOI 10.1002/aenm.201601488.
- 59T. Janoschka, N. Martin, M. D. Hager, U. S. Schubert, Angew. Chem. Int. Ed. 2016, 55, 14427–14430.
- 60X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, Adv. Mater. 2014, 26, 7649–7653.
- 61A. Khataee, E. Dražević, J. Catalano, A. Bentien, J. Electrochem. Soc. 2018, 165, A3918–A3924.
- 62L. Chen, F.-S. Yue, Y.-M. Zhao, S.-S. Wang, Y.-C. Li, G. Li, X.-C. Ge, Eur. Polym. J. 2021, 152, 110487.
- 63Z. Li, T. Jiang, M. Ali, C. Wu, W. Chen, Energy Storage Mater. 2022, 50, 105–138.
- 64J. Luo, B. Hu, M. Hu, Y. Zhao, T. L. Liu, ACS Energy Lett. 2019, 4, 2220–2240.
- 65L. Coury, Curr. Sep. 1999, 18, 91–96.
- 66Y. Xu, Y. H. Wen, J. Cheng, G. P. Cao, Y. S. Yang, Electrochim. Acta 2010, 55, 715–720.
- 67M. L. Crossley, J. Am. Chem. Soc. 1915, 37, 2178–2181.
- 68B. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Nature 2014, 505, 195–198.
- 69G. Li, Y. Jia, S. Zhang, X. Li, J. Li, L. Li, J. Appl. Electrochem. 2017, 47, 261–272.
- 70Q. Liu, X. Li, C. Yan, A. Tang, J. Power Sources 2020, 460, 228124.
- 71R. Ye, D. Henkensmeier, R. Chen, Sustain. Energy Fuels 2020, 4, 2998–3005.
- 72B. Yang, L. Hoober-Burkhardt, S. Krishnamoorthy, A. Murali, G. K. S. Prakash, S. R. Narayanan, J. Electrochem. Soc. 2016, 163, A1442–A1449.
- 73B. Yang, A. Murali, A. Nirmalchandar, B. Jayathilake, G. K. S. Prakash, S. R. Narayanan, J. Electrochem. Soc. 2020, 167, 060520.
- 74A. Murali, A. Nirmalchandar, S. Krishnamoorthy, L. Hoober-Burkhardt, B. Yang, G. Soloveichik, G. K. S. Prakash, S. R. Narayanan, J. Electrochem. Soc. 2018, 165, A1193–A1203.
- 75M. Stolar, T. Baumgartner, Phys. Chem. Chem. Phys. 2013, 15, 9007.
- 76J. Cao, F. Ding, H. Chen, H. Wang, W. Wang, Z. Chen, J. Xu, J. Power Sources 2019, 423, 316–322.
- 77B. Hu, C. DeBruler, Z. Rhodes, T. L. Liu, J. Am. Chem. Soc. 2017, 139, 1207–1214.
- 78H. Li, H. Fan, B. Hu, L. Hu, G. Chang, J. Song, Angew. Chem. Int. Ed. 2021, 60, 26971–26977.
- 79D. Fang, J. Zheng, X. Li, D. Wang, Y. Yang, Z. Liu, Z. Song, M. Jing, Batteries 2023, 9, 285.
- 80Y. Xu, Y. Wen, J. Cheng, G. Cao, Y. Yang, Electrochem. Commun. 2009, 11, 1422–1424.
- 81B. Huskinson, M. P. Marshak, M. R. Gerhardt, M. J. Aziz, ECS Trans. 2014, 61, 27–30.
- 82W. Schlemmer, P. Nothdurft, A. Petzold, G. Riess, P. Frühwirt, M. Schmallegger, G. Gescheidt-Demner, R. Fischer, S. A. Freunberger, W. Kern, S. Spirk, Angew. Chem. Int. Ed. 2020, 59, 22943–22946.
- 83T. Janoschka, C. Friebe, M. D. Hager, N. Martin, U. S. Schubert, ChemistryOpen 2017, 6, 216–220.
- 84P. Leung, T. Martin, Q. Xu, C. Flox, M. R. Mohamad, J. Palma, A. Rodchanarowan, X. Zhu, W. W. Xing, A. A. Shah, Appl. Energy 2021, 282, p116058, DOI 10.1016/j.apenergy.2020.116058.
- 85A. Orita, M. G. Verde, M. Sakai, Y. S. Meng, J. Power Sources 2016, 321, 126–134.
- 86K. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G. Gordon, M. J. Aziz, M. P. Marshak, Science 2015, 349, 1529–1532.
- 87Z. Yang, L. Tong, D. P. Tabor, E. S. Beh, M. A. Goulet, D. De Porcellinis, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Adv. Energy Mater. 2018, 8, 1702056.
- 88M.-A. Goulet, M. J. Aziz, J. Electrochem. Soc. 2018, 165, A1466–A1477.
- 89Y. Ji, M. A. Goulet, D. A. Pollack, D. G. Kwabi, S. Jin, D. De Porcellinis, E. F. Kerr, R. G. Gordon, M. J. Aziz, Adv. Energy Mater. 2019, 9, 1900039.
- 90W. Lee, G. Park, Y. Kwon, Chem. Eng. J. 2020, 386, 123985.
- 91A. Orita, M. G. Verde, M. Sakai, Y. S. Meng, Nat. Commun. 2016, 7, 1–8.
- 92K. Lin, R. Gómez-Bombarelli, E. S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M. J. Aziz, R. G. Gordon, Nat. Energy 2016, 1, 16102.
- 93W. Lee, A. Konovalova, E. Tsoy, G. Park, D. Henkensmeier, Y. Kwon, Int. J. Energy Res. 2022, 46, 12988–13002.
- 94J. Luo, A. Sam, B. Hu, C. DeBruler, X. Wei, W. Wang, T. L. Liu, Nano Energy 2017, 42, 215–221.
- 95D. G. Kwabi, Y. Ji, M. J. Aziz, Chem. Rev. 2020, 120, 6467–6489.
- 96J. Park, Y. Lee, D. Yun, D. Kim, G. Hwang, B. Han, Y. Kim, J. Jung, J. Jeon, Electrochim. Acta 2023, 439, 141644.
- 97J. Luo, B. Hu, C. Debruler, Y. Bi, Y. Zhao, B. Yuan, M. Hu, W. Wu, T. L. Liu, Joule 2019, 3, 149–163.
- 98W. Lee, G. Park, D. Schröder, Y. Kwon, Korean J. Chem. Eng. 2022, 39, 1624–1631.
- 99D. R. Chang, Y. Kim, S. Jung, Int. J. Energy Res. 2019, 43, 4449–4458.
- 100E. Martínez-González, C. Amador-Bedolla, V. M. Ugalde-Saldivar, ACS Appl. Energ. Mater. 2022, 5, 14748–14759.
- 101S. Guiheneuf, T. Godet-Bar, J.-M. Fontmorin, C. Jourdin, D. Floner, F. Geneste, J. Power Sources 2022, 539, 231600.
- 102F. Zhong, M. Yang, M. Ding, C. Jia, Front. Chem. 2020, 8, DOI 10.3389/fchem.2020.00451.
- 103C. DeBruler, B. Hu, J. Moss, X. Liu, J. Luo, Y. Sun, T. L. Liu, Chem 2017, 3, 961–978.
- 104T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert, Nature 2015, 527, 78–81.<
- 105B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935.
- 106L. Xia, W. Huo, H. Gao, H. Zhang, F. Chu, H. Liu, Z. Tan, J. Power Sources 2021, 498, 229896.
- 107B. Hu, J. Luo, M. Hu, B. Yuan, T. L. Liu, Angew. Chem. Int. Ed. 2019, 58, 16629–16636.
- 108E. S. Beh, D. De Porcellinis, R. L. Gracia, K. T. Xia, R. G. Gordon, M. J. Aziz, ACS Energy Lett. 2017, 2, 639–644.
- 109C. DeBruler, B. Hu, J. Moss, J. Luo, T. L. Liu, ACS Energy Lett. 2018, 3, 663–668.
- 110B. Ambrose, R. P. Naresh, M. Ulaganathan, P. Ragupathy, M. Kathiresan, Mater. Lett. 2022, 314, 131876.
- 111B. Liu, C. W. Tang, H. Jiang, G. Jia, T. Zhao, J. Power Sources 2020, 477, 228985.
- 112Y. Zhu, F. Yang, Z. Niu, H. Wu, Y. He, H. Zhu, J. Ye, Y. Zhao, X. Zhang, J. Power Sources 2019, 417, 83–89.
- 113B. Hu, C. Seefeldt, C. Debruler, T. L. Liu, J. Mater. Chem. A 2017, 5, 22137–22145.
- 114G. S. Nambafu, K. Siddharth, C. Zhang, T. Zhao, Q. Chen, K. Amine, M. Shao, Nano Energy 2021, 89, 106422.
- 115W. Lee, A. Permatasari, Y. Kwon, J. Mater. Chem. C 2020, 8, 5727–5731.
- 116B. H. Robb, S. E. Waters, J. D. Saraidaridis, M. P. Marshak, Cell Reports Phys. Sci. 2022, 3, 101118.
- 117M. Huang, S. Hu, X. Yuan, J. Huang, W. Li, Z. Xiang, Z. Fu, Z. Liang, Adv. Funct. Mater. 2022, 32, 2111744, DOI 10.1002/adfm.202111744.
- 118J. Huang, S. Hu, X. Yuan, Z. Xiang, M. Huang, K. Wan, J. Piao, Z. Fu, Z. Liang, Angew. Chem. Int. Ed. 2021, 60, 20921–20925.
- 119S. Hu, T. Li, M. Huang, J. Huang, W. Li, L. Wang, Z. Chen, Z. Fu, X. Li, Z. Liang, Adv. Mater. 2021, 33, 2005839, DOI 10.1002/adma.202005839.
- 120World Energy Council, Energy issues monitor-2017: Exposing the new energy realities, 2017.
- 121“Tracking Clean Energy Progress – Topics – IEA,” July 2023.
- 122A. Malhotra, B. Battke, M. Beuse, A. Stephan, T. Schmidt, Renewable Sustainable Energy Rev. 2016, 56, 705–721.
- 123V. Jülch, Appl. Energy 2016, 183, 1594–1606.
- 124I. Pawel, Energy Procedia 2014, 46, 68–77.
10.1016/j.egypro.2014.01.159 Google Scholar
- 125Ray, Douglas, Lazard's Levelized Cost of Energy Analysis – Version 15.0, 2021.
- 126A. Belderbos, E. Delarue, K. Kessels, W. D'haeseleer, The Levelized Cost of Storage critically analyzed and its intricacies clearly explained, KULeuven Energy Institute TME Branch, 2016..
- 127R. M. Darling, Curr. Opin. Chem. Eng. 2022, 37, 100855.
- 128M. Zheng, J. Sun, C. J. Meinrenken, T. Wang, J. Electrochem. En. Conv. Stor. 2019, 16, DOI 10.1115/1.4040921/368258.
10.1115/1.4040921 Google Scholar
- 129G. Yu, Y. Ding, C. Zhang, L. Zhang, Y. Zhou, Chem. Soc. Rev. 2018, 47, 69.
- 130A. F. M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, Routledge, 2017.
10.1201/9781315140575 Google Scholar
- 131C. Wang, Z. Yang, Y. Wang, P. Zhao, W. Yan, G. Zhu, L. Ma, B. Yu, L. Wang, G. Li, J. Liu, Z. Jin, ACS Energy Lett. 2018, 3, 2404–2409.
- 132Z. Chang, D. Henkensmeier, R. Chen, ChemSusChem 2017, 10, 3193–3197.
- 133J. Winsberg, C. Stolze, S. Muench, F. Liedl, M. D. Hager, U. S. Schubert, ACS Energy Lett. 2016, 1, 976–980.
- 134Y. Zhao, L. Wang, H. R. Byon, Nat. Commun. 2013, 4, 1–7.
- 135S. Sarkar, A. K. Sengupta, P. Prakash, Environ. Sci. Technol. 2010, 44, 1161–1166.
- 136I. A. Khan, A. S. Alzahrani, S. Ali, M. Mansha, M. N. Tahir, M. Khan, H. A. Qayyum, S. A. Khan, Chem. Rec. 2023, DOI 10.1002/tcr.202300171.
- 137S. I. Bailey, I. M. Ritchie, F. R. Hewgill, J. Chem. Soc. Perkin Trans. 2 1983, 645–652.
- 138R. P. Fornari, P. de Silva, Molecules 2021, 26, 3978.
- 139W. A. Braff, J. M. Mueller, J. E. Trancik, Nat. Clim. Chang. 2016, 6, 964–969.