Development of Membranes and Separators to Inhibit Cross-Shuttling of Sulfur in Polysulfide-Based Redox Flow Batteries: A Review
Ibad Ali Khan
Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAtif Saeed Alzahrani
Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorShahid Ali
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Muhammad Mansha
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMuhammad Nawaz Tahir
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMajad Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorHafiz Adil Qayyum
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Department of Physics, College of General Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabi
Search for more papers by this authorCorresponding Author
Safyan Akram Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorIbad Ali Khan
Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAtif Saeed Alzahrani
Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorShahid Ali
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Muhammad Mansha
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMuhammad Nawaz Tahir
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMajad Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorHafiz Adil Qayyum
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Department of Physics, College of General Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabi
Search for more papers by this authorCorresponding Author
Safyan Akram Khan
Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAbstract
The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600 Wh/kg and volumetric: 2800 Wh/L). However, sulfur-based batteries exhibit certain scientific limitations, such as polysulfide crossover, which causes rapid capacity decay and low Coulombic efficiency, thereby hindering their implementation at a commercial scale. In this review article, we focus on the latest research developments between 2012–2023 to improve the separators/membranes and overcome the shuttle effect associated with them. Various categories of ion exchange membranes (IEMs) used in redox batteries, particularly polysulfide redox flow batteries and lithium-sulfur batteries, are discussed in detail. Furthermore, advances in IEM constituents are summarized to gain insights into different fundamental strategies for attaining targeted characteristics, and a critical analysis is proposed to highlight their efficiency in mitigating sulfur cross-shuttling issues. Finally, future prospects and recommendations are suggested for future research toward the fabrication of more effective membranes with desired properties.
References
- 1J. Skea, S. Nishioka, Clim. Policy 2008, 8, S5–S16.
- 2P. A. Kharecha, J. E. Hansen, Environ. Sci. Technol. 2013, 47, 4889–4895.
- 3G. L. Soloveichik, Chem. Rev. 2015, 115, 11533–11558.
- 4W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater. 2013, 23, 970–986.
- 5X. Luo, J. Wang, M. Dooner, J. Clarke, Appl. Energy 2015, 137, 511–536.
- 6G. Chaudhary, J. J. Lamb, O. S. Burheim, B. Austbø, Energies 2021, 14, 4929.
- 7H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Prog. Nat. Sci. 2009, 19, 291–312.
- 8Abbas A. Akhil, Georgianne Huff, Aileen B. Currier, Benjamin C. Kaun, W. D. G. Stella Bingqing Chen, Andrew L. Cotter, Dale T. Bradshaw, 2013, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550, 2013, www.sandia.gov/ess
- 9P. C. Butler, Battery Energy Storage for Utility Applications: Phase I - Opportunities Analysis, Albuquerque, NM, and Livermore, CA (United States), 1994, 1-69. doi:10.2172/10196262.
- 10E. S. Beh, D. De Porcellinis, R. L. Gracia, K. T. Xia, R. G. Gordon, M. J. Aziz, ACS Energy Lett. 2017, 2, 639–644.
- 11A. Clemente, R. Costa-Castelló, Energies 2020, 13, 4514.
- 12R. M. Darling, K. G. Gallagher, J. A. Kowalski, S. Ha, F. R. Brushett, Energy Environ. Sci. 2014, 7, 3459–3477.
- 13J. Huang, L. Su, J. A. Kowalski, J. L. Barton, M. Ferrandon, A. K. Burrell, F. R. Brushett, L. Zhang, J. Mater. Chem. A 2015, 3, 14971–14976.
- 14T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energy Mater. 2016, 6, 1501449.
- 15F. R. Brushett, J. T. Vaughey, A. N. Jansen, Adv. Energy Mater. 2012, 2, 1390–1396.
- 16J. Rodriguez, “Going with the flow: An introduction to redox flow batteries - Solar Choice,” https://www.solarchoice.net.au/blog/news/an-introduction-to-flow-batteries-030315/
- 17K. Lin, R. Gómez-Bombarelli, E. S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M. J. Aziz, R. G. Gordon, Nat. Energy 2016, 1, 16102.
- 18J. Chai, A. Lashgari, J. “Jimmy” Jiang, 2020, Electroactive Materials for Next-Generation Redox Flow Batteries: From Inorganic to Organic, pp. 1–47.
- 19I. Iwakiri, T. Antunes, H. Almeida, J. P. Sousa, R. B. Figueira, A. Mendes, Energies 2021, 14, 5643.
- 20A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, Q. Liu, J. Appl. Electrochem. 2011, 41, 1137–1164.
- 21S. H. Ge, B. L. Yi, H. M. Zhang, J. Appl. Electrochem. 2004, 34, 181–185.
- 22P. Zhao, H. Zhang, H. Zhou, B. Yi, Electrochim. Acta 2005, 51, 1091–1098.
- 23H. Zhou, H. Zhang, P. Zhao, B. Yi, Electrochim. Acta 2006, 51, 6304–6312.
- 24Z. Li, G. Weng, Q. Zou, G. Cong, Y.-C. Lu, Nano Energy 2016, 30, 283–292.
- 25D. Ma, B. Hu, W. Wu, X. Liu, J. Zai, C. Shu, T. Tadesse Tsega, L. Chen, X. Qian, T. L. Liu, Nat. Commun. 2019, 10, 3367.
- 26Z. Li, Y.-C. Lu, Nat. Energy 2021, 6, 517–528.
- 27X. Wei, G.-G. Xia, B. Kirby, E. Thomsen, B. Li, Z. Nie, G. G. Graff, J. Liu, V. Sprenkle, W. Wang, J. Electrochem. Soc. 2016, 163, A5150–A5153.
- 28Y. Xia, V. Yufit, N. P. Brandon, ECS Meet. Abstr. 2015, MA2015-03, 654–654.
10.1149/MA2015-03/3/654 Google Scholar
- 29UK Department of Trade and Industry (DTI), Review of Electrical Energy Storage Technologies and Systems and Their Potential for the UK: DG/DTI/00055/00/00, URN Number 04/1876., https://silo.tips/download/review-of-electrical-energy-storage-technologies-and-systems-and-of-their-potent, 2004.
- 30D. Jonghe, J. Electrochem. Soc. 1996, 686, 1409–1415.
- 31L. Su, A. F. Badel, C. Cao, J. J. Hinricher, F. R. Brushett, Ind. Eng. Chem. Res. 2017, 56, 9783–9792.
- 32S. Zhang, W. Guo, F. Yang, P. Zheng, R. Qiao, Z. Li, Batteries & Supercaps 2019, 2, 627–637.
- 33Y. Xia, M. Ouyang, V. Yufit, R. Tan, A. Regoutz, A. Wang, W. Mao, B. Chakrabarti, A. Kavei, Q. Song, A. R. Kucernak, N. P. Brandon, Nat. Commun. 2022, 13, 2388.
- 34H. Pan, X. Wei, W. A. Henderson, Y. Shao, J. Chen, P. Bhattacharya, J. Xiao, J. Liu, Adv. Energy Mater. 2015, 5, 1500113.
- 35N. Li, Z. Weng, Y. Wang, F. Li, H.-M. Cheng, H. Zhou, Energy Environ. Sci. 2014, 7, 3307–3312.
- 36B. Li, J. Liu, Natl. Sci. Rev. 2017, 4, 91–105.
- 37E. Alhajji, W. Wang, W. Zhang, H. N. Alshareef, ACS Appl. Mater. Interfaces 2020, 12, 18833–18839.
- 38C. A. Machado, G. O. Brown, R. Yang, T. E. Hopkins, J. G. Pribyl, T. H. Epps, ACS Energy Lett. 2021, 6, 158–176.
- 39W. Dai, Y. Shen, Z. Li, L. Yu, J. Xi, X. Qiu, J. Mater. Chem. A 2014, 2, 12423–12432.
- 40T. Xu, J. Membr. Sci. 2005, 263, 1–29.
- 41J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, T. Xu, J. Membr. Sci. 2017, 522, 267–291.
- 42Z. Zhang, T. Xu, J. Polym. Sci. Part A 2014, 52, 200–207.
- 43Z. Zhang, L. Wu, T. Xu, J. Mater. Chem. 2012, 22, 13996.
- 44Z. Zhang, T. Xu, J. Membr. Sci. 2013, 446, 121–124.
- 45N. Fifield, X. Wang, T. Wang, S. Kim, C. Bae, ECS Meet. Abstr. 2020, MA2020-02, 2238–2238.
10.1149/MA2020-02352238mtgabs Google Scholar
- 46M. Ingratta, E. P. Jutemar, P. Jannasch, Macromolecules 2011, 44, 2074–2083.
- 47G. Zeng, D. Zhang, L. Yan, B. Yue, T. Pan, Y. Hu, S. He, H. Zhao, J. Zhang, Int. J. Hydrogen Energy 2021, 46, 20664–20677.
- 48Z. Shi, S. Holdcroft, Macromolecules 2005, 38, 4193–4201.
- 49L. Chen, D. T. Hallinan, Y. A. Elabd, M. A. Hillmyer, Macromolecules 2009, 42, 6075–6085.
- 50D. Y. Oh, J. U. Lee, W. H. Jo, J. Mater. Chem. 2012, 22, 7187.
- 51D. W. Shin, S. Y. Lee, C. H. Lee, K.-S. Lee, C. H. Park, J. E. McGrath, M. Zhang, R. B. Moore, M. D. Lingwood, L. A. Madsen, Y. T. Kim, I. Hwang, Y. M. Lee, Macromolecules 2013, 46, 7797–7804.
- 52B. Bae, T. Yoda, K. Miyatake, H. Uchida, M. Watanabe, Angew. Chem. Int. Ed. 2010, 49, 317–320.
- 53B. Bae, K. Miyatake, M. Watanabe, Macromolecules 2010, 43, 2684–2691.
- 54T. Miyahara, T. Hayano, S. Matsuno, M. Watanabe, K. Miyatake, ACS Appl. Mater. Interfaces 2012, 4, 2881–2884.
- 55N. Li, T. Yan, Z. Li, T. Thurn-Albrecht, W. H. Binder, Energy Environ. Sci. 2012, 5, 7888.
- 56M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy 2013, 38, 4901–4934.
- 57Y. Wibisono, E. R. Cornelissen, A. J. B. Kemperman, W. G. J. Van der Meer, K. Nijmeijer, J. Membr. Sci. 2014, 453, 566–602.
- 58X. Li, H. H. Zhang, Z. Mai, H. H. Zhang, I. Vankelecom, Energy Environ. Sci. 2011, 4, 1147.
- 59K.-D. Kreuer, Chem. Mater. 2014, 26, 361–380.
- 60N. Li, M. D. Guiver, Macromolecules 2014, 47, 2175–2198.
- 61S. Takamuku, A. Wohlfarth, A. Manhart, P. Räder, P. Jannasch, Polym. Chem. 2015, 6, 1267–1274.
- 62X. Zhang, T. Dong, Y. Pu, T. Higashihara, M. Ueda, L. Wang, J. Phys. Chem. C 2015, 119, 19596–19606.
- 63L. Sheng, T. Higashihara, S. Nakazawa, M. Ueda, Polym. Chem. 2012, 3, 3289.
- 64C. Wang, D. W. Shin, S. Y. Lee, N. R. Kang, Y. M. Lee, M. D. Guiver, J. Membr. Sci. 2012, 405–406, 68–78.
- 65T. Na, K. Shao, J. Zhu, H. Sun, Z. Liu, C. Zhao, Z. Zhang, C. M. Lew, G. Zhang, J. Membr. Sci. 2012, 417–418, 61–68.
- 66Z. Qi, C. Gong, Y. Liang, H. Li, Z. Wu, W. Feng, Y. Wang, S. Zhang, Y. Li, Int. J. Hydrogen Energy 2015, 40, 9267–9277.
- 67B. Lafitte, M. Puchner, P. Jannasch, Macromol. Rapid Commun. 2005, 26, 1464–1468.
- 68K. Si, D. Dong, R. Wycisk, M. Litt, J. Mater. Chem. 2012, 22, 20907.
- 69T. B. Norsten, M. D. Guiver, J. Murphy, T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, J. Ding, Adv. Funct. Mater. 2006, 16, 1814–1822.
- 70Z. Zhang, E. Chalkova, M. Fedkin, C. Wang, S. N. Lvov, S. Komarneni, T. C. M. Chung, Macromolecules 2008, 41, 9130–9139.
- 71E. M. W. Tsang, Z. Zhang, A. C. C. Yang, Z. Shi, T. J. Peckham, R. Narimani, B. J. Frisken, S. Holdcroft, Macromolecules 2009, 42, 9467–9480.
- 72N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, M. D. Guiver, Angew. Chem. Int. Ed. 2011, 50, 9158–9161.
- 73L. Fu, G. Xiao, D. Yan, J. Mater. Chem. 2012, 22, 13714.
- 74L. Wu, D. Zhou, H. Wang, Q. Pan, J. Ran, T. Xu, Fuel Cells 2015, 15, 189–195.
- 75X. Guo, S. Yuan, J. Fang, Polymer 2015, 59, 207–214.
- 76W. H. Lee, K. H. Lee, D. W. Shin, D. S. Hwang, N. R. Kang, D. H. Cho, J. H. Kim, Y. M. Lee, J. Power Sources 2015, 282, 211–222.
- 77S. Y. Lee, N. R. Kang, D. W. Shin, C. H. Lee, K.-S. Lee, M. D. Guiver, N. Li, Y. M. Lee, Energy Environ. Sci. 2012, 5, 9795.
- 78B. Jiang, H. Pu, H. Pan, Z. Chang, M. Jin, D. Wan, Electrochim. Acta 2014, 132, 457–464.
- 79H. Jiang, X. Guo, G. Zhang, J. Ni, C. Zhao, Z. Liu, L. Zhang, M. Li, S. Xu, H. Na, J. Power Sources 2013, 241, 529–535.
- 80K. H. Gopi, S. G. Peera, S. D. Bhat, P. Sridhar, S. Pitchumani, Int. J. Hydrogen Energy 2014, 39, 2659–2668.
- 81G. Nie, X. Li, J. Tao, W. Wu, S. Liao, J. Membr. Sci. 2015, 474, 187–195.
- 82K. Shen, J. Pang, S. Feng, Y. Wang, Z. Jiang, J. Membr. Sci. 2013, 440, 20–28.
- 83A. Jasti, V. K. Shahi, J. Mater. Chem. A 2013, 1, 6134.
- 84J. Wang, Z. Zhao, F. Gong, S. Li, S. Zhang, Macromolecules 2009, 42, 8711–8717.
- 85S. Maurya, S.-H. Shin, M.-K. Kim, S.-H. Yun, S.-H. Moon, J. Membr. Sci. 2013, 443, 28–35.
- 86S. Vengatesan, S. Santhi, G. Sozhan, S. Ravichandran, D. J. Davidson, S. Vasudevan, RSC Adv. 2015, 5, 27365–27371.
- 87S. Zhang, C. Li, X. Xie, F. Zhang, Int. J. Hydrogen Energy 2014, 39, 13718–13724.
- 88X. Ge, Y. He, M. D. Guiver, L. Wu, J. Ran, Z. Yang, T. Xu, Adv. Mater. 2016, 28, 3467–3472.
- 89T. Wang, X. Wang, A. Pendse, Y. Gao, K. Wang, C. Bae, S. Kim, J. Membr. Sci. 2021, 636, 119539.
- 90S. Cong, J. Wang, Z. Wang, X. Liu, Green Chem. Eng. 2021, 2, 44–56.
- 91M. Jung, W. Lee, N. Nambi Krishnan, S. Kim, G. Gupta, L. Komsiyska, C. Harms, Y. Kwon, D. Henkensmeier, Appl. Surf. Sci. 2018, 450, 301–311.
- 92L. Ding, X. Song, L. Wang, Z. Zhao, G. He, Electrochim. Acta 2018, 292, 10–19.
- 93X. Yan, Z. Dong, M. Di, L. Hu, C. Zhang, Y. Pan, N. Zhang, X. Jiang, X. Wu, J. Wang, G. He, J. Membr. Sci. 2020, 596, 117616.
- 94G. Li, C. Wang, W. Cai, Z. Lin, Z. Li, S. Zhang, NPG Asia Mater. 2016, 8, e317–e317.
- 95A. Hussain, Y. Luo, T. Li, H. Zhang, S. Mirza, H. Zhang, X. Li, ACS Appl. Mater. Interfaces 2020, 12, 55809–55819.
- 96R. Aswathy, S. Suresh, M. Ulaganathan, P. Ragupathy, Mater. Today Energy 2019, 12, 37–45.
- 97A. M. Bazargan, Z. Gholamvand, M. Naghavi, M. R. Shayegh, S. K. Sadrnezhaad, Funct. Mater. Lett. 2009, 02, 113–119.
- 98M. R. Asghar, Y. Zhang, A. Wu, X. Yan, S. Shen, C. Ke, J. Zhang, J. Power Sources 2018, 379, 197–205.
- 99C. Wu, S. Lu, H. Wang, X. Xu, S. Peng, Q. Tan, Y. Xiang, J. Mater. Chem. A 2016, 4, 1174–1179.
- 100M. Shaibani, A. Akbari, P. Sheath, C. D. Easton, P. C. Banerjee, K. Konstas, A. Fakhfouri, M. Barghamadi, M. M. Musameh, A. S. Best, T. Rüther, P. J. Mahon, M. R. Hill, A. F. Hollenkamp, M. Majumder, ACS Nano 2016, 10, 7768–7779.
- 101X. Wang, X. Hao, Z. Hengjing, X. Xia, J. Tu, Electrochim. Acta 2020, 329, 135108.
- 102X. Lou, H. Fu, J. Xu, Y. Long, S. Yan, H. Zou, B. Lu, M. He, M. Ding, X. Zhu, C. Jia, Energy Mater. Adv. 2022, 2022, DOI 10.34133/2022/9865618.
10.34133/2022/9865618 Google Scholar
- 103Y. Liu, C. Li, B. Li, H. Song, Z. Cheng, M. Chen, P. He, H. Zhou, Adv. Energy Mater. 2018, 8, 1702374.
- 104M. Monchak, T. Hupfer, A. Senyshyn, H. Boysen, D. Chernyshov, T. Hansen, K. G. Schell, E. C. Bucharsky, M. J. Hoffmann, H. Ehrenberg, Inorg. Chem. 2016, 55, 2941–2945.
- 105P. Silambarasan, A. G. Ramu, M. Govarthanan, W. Kim, I. S. Moon, Chemosphere 2022, 291, 132680.
- 106E. Allcorn, G. Nagasubramanian, H. D. Pratt, E. Spoerke, D. Ingersoll, J. Power Sources 2018, 378, 353–361.
- 107M. M. Gross, A. Manthiram, ACS Appl. Energ. Mater. 2019, 2, 3445–3451.
- 108M. Chen, H. Chen, Nanoscale Adv. 2023, 5, 435–442.
- 109M. M. Gross, A. Manthiram, Energy Storage Mater. 2019, 19, 346–351.
- 110T.-Z. Zhuang, J.-Q. Huang, H.-J. Peng, L.-Y. He, X.-B. Cheng, C.-M. Chen, Q. Zhang, Small 2016, 12, 381–389.
- 111J. L. Tyler, R. L. Sacci, M. L. Lehmann, G. Yang, T. A. Zawodzinski, J. Nanda, J. Phys. Chem. C 2022, 126, 21188–21195.
- 112D. B. Babu, K. Giribabu, K. Ramesha, ACS Appl. Mater. Interfaces 2018, 10, 19721–19729.
- 113J. Gao, C. Sun, L. Xu, J. Chen, C. Wang, D. Guo, H. Chen, J. Power Sources 2018, 382, 179–189.
- 114Ş. Dombaycıoğlu, H. Günsel, A. O. Aydın, ChemistrySelect 2022, 7, DOI 10.1002/slct.202202910.
10.1002/slct.202202910 Google Scholar
- 115C. Ye, A. Wang, C. Breakwell, R. Tan, C. Grazia Bezzu, E. Hunter-Sellars, D. R. Williams, N. P. Brandon, P. A. A. Klusener, A. R. Kucernak, K. E. Jelfs, N. B. McKeown, Q. Song, Nat. Commun. 2022, 13, 3184.
- 116X. Yu, S. Feng, M. J. Boyer, M. Lee, R. C. Ferrier, N. A. Lynd, G. S. Hwang, G. Wang, S. Swinnea, A. Manthiram, Mater. Today Energy 2018, 7, 98–104.
- 117M. Shaibani, A. F. Hollenkamp, M. R. Hill, M. Majumder, Curr. Opin. Chem. Eng. 2017, 16, 31–38.
- 118M. Li, X. Li, V. Tung, Y. Li, Z. Lai, ACS Appl. Energ. Mater. 2020, 3, 2510–2515.
- 119K. Sun, C. Wang, Y. Dong, P. Guo, P. Cheng, Y. Fu, D. Liu, D. He, S. Das, Y. Negishi, ACS Appl. Mater. Interfaces 2022, 14, 4079–4090.
- 120X. Li, Y. Zhang, S. Wang, Y. Liu, Y. Ding, G. He, X. Jiang, W. Xiao, G. Yu, Nano Lett. 2020, 20, 6922–6929.
- 121Y. Zhu, X. Wu, M. Li, Y. Ji, Q. Li, X. He, Z. Lei, Z. Liu, R. Jiang, J. Sun, ACS Sustainable Chem. Eng. 2022, 10, 776–788.
- 122B. Chen, H. Huang, J. Lin, K. Zhu, L. Yang, X. Wang, J. Chen, B. Chen, J. Lin, K. Zhu, L. Yang, X. Wang, J. Chen, H. Huang, Adv. Sci. 2023, 10, 2206949.