Shape-Controlled First-Row Transition Metal Vanadates for Electrochemical and Photoelectrochemical Water Splitting
Corresponding Author
Dr. Ibrahim Khan
- [email protected]
- [email protected]
- +82-2-822-050382-2-820-5401
School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
Search for more papers by this authorYunjeong Gu
School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
Search for more papers by this authorCorresponding Author
Ass. Prof. Dr. Sanghyuk Wooh
School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
Search for more papers by this authorCorresponding Author
Dr. Ibrahim Khan
- [email protected]
- [email protected]
- +82-2-822-050382-2-820-5401
School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
Search for more papers by this authorYunjeong Gu
School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
Search for more papers by this authorCorresponding Author
Ass. Prof. Dr. Sanghyuk Wooh
School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
Search for more papers by this authorAbstract
Transition metal vanadates (MVs) possess abundant electroactive sites, short ion diffusion pathways, and optical properties that make them suitable for various electrochemical (EC) and photoelectrochemical (PEC) applications. While these materials are commonly used in energy storage devices like batteries and capacitors, their shape-controlled 1D and 2D morphologies have gained equal popularity in water splitting (WS) technology in recent times. This review focuses on recent progress made on various first-row (3d, 4 s) transition metal vanadates (t-MVs) having controlled one-dimensional (fiber, wire, or rod) and two-dimensional (layered or sheet) morphologies with a specific emphasis on copper vanadates (CuV), cobalt vanadates (CoV), iron vanadates (FeV), and nickel vanadates (NiV). The review covers different aspects of shape-controlled 1D and 2D t-MVs including optoelectrical properties, wet chemistry synthesis, and electrochemical (EC-WS) and photoelectrochemical water splitting (PEC-WS) performance in terms of onset potential, overpotential, and long-term stability or high cyclic performance. The review concludes by providing some possible thoughts on how to promote the water-splitting attributes of shape-controlled t-MVs more effectively.
References
- 1M. Ashraf, N. Ullah, I. Khan, W. Tremel, S. Ahmad, M. N. Tahir, Chem. Rev. 2023, 123, 4443–4509.
- 2M. Mansha, T. Ahmad, N. Ullah, S. Akram Khan, M. Ashraf, S. Ali, B. Tan, I. Khan, Chem. Rec. 2022, 22, 202100336.
- 3R. De Levie, J. Electroanal. Chem. 1999, 476, 92–93.
- 4A. Hauch, S. D. Ebbesen, S. H. Jensen, M. Mogensen, J. Mater. Chem. 2008, 18, 2331–2340.
- 5R. Marschall, Eur. J. Inorg. Chem. 2021, 2021, 2435–2441.
- 6M. Ashraf, I. Khan, N. Baig, A. H. Hendi, M. F. Ehsan, N. Sarfraz, Energy Technol. 2021, 9, 2100034.
- 7J. H. Kim, J. S. Lee, Adv. Mater. 2019, 31, 1806938.
- 8J. A. Seabold, N. R. Neale, Chem. Mater. 2015, 27, 1005–1013.
- 9W. Shao, M. Xiao, C. Yang, M. Cheng, S. Cao, C. He, M. Zhou, T. Ma, C. Cheng, S. Li, Small 2022, 18, 2105763.
- 10G. Yao, N. Zhang, Y. Zhang, T. Zhou, J. Nanopart. Res. 2021, 23, 1–27.
10.1007/s11051-021-05158-9 Google Scholar
- 11Y. Zhang, Y. Liu, J. Chen, Q. Guo, T. Wang, H. Pang, Sci. Rep. 2015, 4, 5687.
10.1038/srep05687 Google Scholar
- 12L. Zhou, W. Wang, L. Zhang, H. Xu, W. Zhu, J. Phys. Chem. C 2007, 111, 13659–13664.
- 13T. W. Kim, K. S. Choi, Science 2014, 343, 990–994.
- 14I. Khan, S. Ali, M. Mansha, A. Qurashi, Ultrason. Sonochem. 2017, 36, 386–392.
- 15Y. Liang, T. Tsubota, L. P. A. Mooij, R. Van De Krol, J. Phys. Chem. C 2011, 115, 17594–17598.
- 16M. Huang, W. Lei, M. Wang, S. Zhao, C. Li, M. Wang, H. Zhu, J. Mater. Chem. A 2020, 8, 3845–3850.
- 17K. Zhang, J. H. Park, J. Liu, L. Wang, B. Jin, X. Yang, S. Zhang, J. Am. Chem. Soc. 2020, 142, 8641–8648.
- 18V. S. Saji, Electrochim. Acta 2022, 430, 141095.
- 19Z. He, J. Zhang, X. Li, S. Guan, M. Dai, S. Wang, Z. He, J. Zhang, X. Li, S. Guan, S. Wang, M. Dai, Small 2020, 16, 2005051.
- 20W. Ye, Y. Yang, X. Fang, M. Arif, X. Chen, D. Yan, ACS Sustainable Chem. Eng. 2019, 7, 18085–18092.
- 21D. C. Crans, A. S. Tracey, American Chemical Society (ACS), 1998, pp. 2–29.
- 22S. Lee, J. H. Lee, H. P. Ha, J. Kim, Chem. Mater. 2022, 34, 1078–1097.
- 23F. Cheng, J. Chen, J. Mater. Chem. 2011, 21, 9841–9848.
- 24D. Diaz-Anichtchenko, E. Bandiello, J. Gonzáles-Platas, A. Liang, Z. He, A. Muñoz, P. Rodríguez-Hernández, D. Errandonea, C. Popescu, J. Phys. Chem. C 2022, 126, 13416–13426.
- 25D. Cardenas-Morcoso, A. Peiro-Franch, I. Herraiz-Cardona, S. Gimenez, Catal. Today 2017, 290, 65–72.
- 26T. Hillel, Y. Ein-Eli, J. Power Sources 2013, 229, 112–116.
- 27M. K. Hossain, P. Sotelo, H. P. Sarker, M. T. Galante, A. Kormányos, C. Longo, R. T. Macaluso, M. N. Huda, C. Janáky, K. Rajeshwar, ACS Appl. Energ. Mater. 2019, 2, 2837–2847.
- 28A. Song, S. P. Berglund, A. Chemseddine, D. Friedrich, F. F. Abdi, R. Van De Krol, J. Mater. Chem. A 2020, 8, 12538–12547.
- 29W. Guo, W. D. Chemelewski, O. Mabayoje, P. Xiao, Y. Zhang, C. B. Mullins, J. Phys. Chem. C 2015, 119, 27220–27227.
- 30L. Yang, L. Zhou, M. Wang, Y. Qi, D. Guo, H. Li, X. Chen, S. Wang, Adv. Mater. Interfaces 2022, 9, 2201486.
- 31A. Mondal, S. Ganguli, H. R. Inta, V. Mahalingam, ACS Appl. Energ. Mater. 2021, 4, 5381–5387.
- 32A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2020, 142, 11901–11914.
- 33M. Xing, L.-B. Kong, M.-C. Liu, L.-Y. Liu, L. Kang, Y.-C. Luo, J. Mater. Chem. A 2014, 2, 18435–18443.
- 34E. E. Sauerbrei, R. Faggiani, C. Calvo, Acta Crystallogr. Sect. B 1973, 29, 2304–2306.
- 35M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. salavati-Niasari, J. Mol. Catal. A 2016, 425, 31–42.
- 36C. Mu, J. Mao, J. X. Guo, Q. J. Guo, Z. Q. Li, W. J. Qin, Z. P. Hu, K. Davey, T. Ling, S. S.-Z. Qiao, C. Mu, J. Mao, J. X. Guo, Q. J. Guo, T. Ling, S. S.-Z. Qiao, Z. Q. Li, W. J. Qin, Z. P. Hu, K. Davey, Adv. Mater. 2020, 32, 1907168.
- 37R. Szymczak, M. Baran, R. Diduszko, J. Fink-Finowicki, M. Gutowska, A. Szewczyk, H. Szymczak, J. Magn. Magn. Mater. 2007, 310, 1306–1307.
- 38S. E. Arasi, R. Ranjithkumar, P. Devendran, M. Krishnakumar, A. Arivarasan, J. Energy Storage 2021, 41, 102986.
- 39Z. He, J. I. Yamaura, Y. Ueda, W. Cheng, J. Am. Chem. Soc. 2009, 131, 7554–7555.
- 40M. Shahid, A. Nafady, I. Shakir, U. A. Rana, M. Sarfraz, M. F. Warsi, R. Hussain, M. N. Ashiq, J. Nanopart. Res. 2013, 15, 1–6.
- 41S. P. Keerthana, R. Yuvakkumar, P. S. Kumar, G. Ravi, D. Velauthapillai, Environ. Res. 2022, 211, 112964.
- 42H. Mortadi, E. Sabbar, M. Bettach, Phys. Condens. Matter 2019, 561, 159–163.
- 43A. Hassan, T. Iqbal, M. B. Tahir, S. Afsheen, Int. J. Energy Res. 2019, 43, 9–28.
- 44M. Zhang, Y. Fang, Y. F. Tay, Y. Liu, L. Wang, H. Jani, F. F. Abdi, L. H. Wong, ACS Appl. Energ. Mater. 2022, 5, 3409–3416.
- 45D. Ozer, E. T. Tunca, N. A. Oztas, J. Nanopart. Res. 2021, 23, 1–12.
10.1007/s11051-021-05303-4 Google Scholar
- 46G. Kesavan, M. Pichumani, S. M. Chen, ACS Appl. Nano Mater. 2021, 4, 5883–5894.
- 47Y. V. Kaneti, M. Liu, X. Zhang, Y. Bu, Y. Yuan, X. Jiang, A. Yu, Sens. Actuators B 2016, 236, 173–183.
- 48Y. Jiang, F. Wu, Z. Ye, C. Li, Y. Zhang, L. Li, M. Xie, R. Chen, Y. Jiang, F. Wu, Z. Ye, C. Li, Y. Zhang, L. Li, M. Xie, R. Chen, Adv. Funct. Mater. 2021, 31, 2009756.
- 49D. Tang, A. J. E. Rettie, O. Mabayoje, B. R. Wygant, Y. Lai, Y. Liu, C. B. Mullins, J. Mater. Chem. A 2016, 4, 3034–3042.
- 50P. B. Romero-Vázquez, S. López-Moreno, D. Errandonea, Crystals 2022, 12, 1835.
- 51C. T. Crespo, Sol. Energy 2019, 183, 345–349.
- 52A. Z. Khan, I. Khan, A. Sufyan, D. Anjum, A. Qurashi, J. Environ. Chem. Eng. 2021, 9, 105526.
- 53C. Wang, D. Fang, H. Wang, Y. Cao, W. Xu, X. Liu, Z. Luo, G. Li, M. Jiang, C. Xiong, Sci. Rep. 2016, 6, 20826.
- 54M. Guo, J. Balamurugan, N. H. Kim, J. H. Lee, Appl. Catal. B 2018, 239, 290–299.
- 55Y. Li, H. Sun, Y. Yang, Y. Cao, W. Zhou, H. Chai, J. Colloid Interface Sci. 2020, 580, 298–307.
- 56H. X. Dang, A. J. E. Rettie, C. B. Mullins, J. Phys. Chem. C 2015, 119, 14524–14531.
- 57H. Qin, S. Liang, L. Chen, Y. Li, Z. Luo, S. Chen, Sustain. Energy Fuels 2020, 4, 4902–4933.
- 58D. Díaz-Anichtchenko, D. Errandonea, Crystals 2022, 12, 1544.
- 59M. Escoda-Torroella, C. Moya, A. F. Rodríguez, X. Batlle, A. Labarta, Langmuir 2021, 37, 35–45.
- 60I. Khan, A. Jalilov, K. Fujii, A. Qurashi, Solar RRL 2021, 5, 2000741.
- 61E. Pomerantseva, Y. Gogotsi, Nat. Energy 2017, 2, 17089.
- 62W. H. Lai, Y. X. Wang, Y. Wang, M. Wu, J. Z. Wang, H. K. Liu, S. L. Chou, J. Chen, S. X. Dou, Nat. Chem. 2019, 11, 695–701.
- 63I. Khan, A. Qurashi, Sci. Rep. 2017, 7, 14370.
- 64I. Khan, Catalysts 2023, 13, 636.
- 65M. Hao, M. Xiao, L. Qian, Y. Miao, Front. Chem. Sci. Eng. 2018, 12, 409–416.
- 66L. Zhang, Y. Luo, R. Zhang, D. Fang, T. Zeng, H. Wang, J. Yi, ACS Appl. Energ. Mater. 2021, 4, 13401–13409.
- 67L. P. Camargo, A. C. Lucilha, G. A. B. Gomes, V. R. Liberatti, A. C. Andrello, P. R. C. da Silva, L. H. Dall'Antonia, J. Solid State Electrochem. 2020, 24, 1935–1950.
- 68T. Yin, H. Wang, S. Li, B. Lu, J. Zhao, Q. Cai, Appl. Surf. Sci. 2021, 548, 149180.
- 69L. Pei, N. Lin, T. Wei, H. Liu, H. Yu, J. Mater. Chem. A 2015, 3, 2690–2700.
- 70Z. Peng, Q. Wei, S. Tan, P. He, W. Luo, Q. An, L. Mai, Chem. Commun. 2018, 54, 4041–4044.
- 71L. Bai, J. Zhu, X. Zhang, Y. Xie, J. Mater. Chem. 2012, 22, 16957.
- 72C. Wang, D. Fang, H. Wang, Y. Cao, W. Xu, X. Liu, Z. Luo, G. Li, M. Jiang, C. Xiong, Sci. Rep. 2016, 6, 20826.
- 73H. Huang, T. Tian, L. Pan, X. Chen, E. Tervoort, C. J. Shih, M. Niederberger, J. Mater. Chem. A 2019, 7, 16109–16116.
- 74F. Zhang, M. Du, Z. Miao, H. Li, W. Dong, Y. Sang, H. Jiang, W. Li, H. Liu, S. Wang, InfoMat 2022, 4, e12346.
- 75Z. Wu, J. Yang, W. Shao, M. Cheng, X. Luo, M. Zhou, S. Li, T. Ma, C. Cheng, C. Zhao, Adv. Fiber Mater. 2022, 4, 774–785.
- 76Z. Zand, P. Salimi, M. R. Mohammadi, R. Bagheri, P. Chernev, Z. Song, H. Dau, M. Görlin, M. M. Najafpour, ACS Sustainable Chem. Eng. 2019, 7, 17252–17262.
- 77F. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. Wang, M. J. Bojdys, Nat. Rev. Mater. 2017, 2, 1–17.
- 78M. A. Ehsan, A. S. Hakeem, M. Sharif, A. Rehman, ACS Omega 2019, 4, 12671–12679.
- 79Y. Xiao, C. Tian, M. Tian, A. Wu, H. Yan, C. Chen, L. Wang, Y. Jiao, H. Fu, Sci. China Mater. 2018, 61, 80–90.
- 80B. X. Tao, X. L. Li, C. Ye, Q. Zhang, Y. H. Deng, L. Han, L. J. Li, H. Q. Luo, N. B. Li, Nanoscale 2019, 11, 18238–18245.
- 81S. S. Sankar, K. Karthick, K. Sangeetha, R. S. Gill, S. Kundu, ACS Sustainable Chem. Eng. 2020, 8, 4572–4579.
- 82K. Fan, H. Chen, Y. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun, Nat. Commun. 2016, 7, 1–9.
- 83A. Karmakar, S. K. Srivastava, J. Mater. Chem. A 2019, 7, 15054–15061.
- 84Z. Zand, P. Salimi, M. R. Mohammadi, R. Bagheri, P. Chernev, Z. Song, H. Dau, M. Görlin, M. M. Najafpour, ACS Sustainable Chem. Eng. 2019, 7, 17252–17262.
- 85N. Kitiphatpiboon, S. Sirisomboonchai, M. Chen, S. Li, X. Li, J. Wang, X. Hao, A. Abudula, G. Guan, Electrochim. Acta 2022, 405, 139623.
- 86R. Yao, L. Liu, J. Wang, Y. Wu, Q. Zhao, J. Li, G. Liu, J. Alloys Compd. 2022, 929, 167312.
- 87W. Wang, Y. Zhang, X. Huang, Y. Bi, J. Mater. Chem. A 2019, 7, 10949–10953.
- 88B. Xia, Y. Zhang, B. Shi, J. Ran, K. Davey, S. Qiao, Small Methods 2020, 4, 2000063.
- 89I. Khan, A. Qurashi, Photoelectrochemical Water Splitting Method, 2023, US20230067267 A1.
- 90M. Valenti, M. P. Jonsson, G. Biskos, A. Schmidt-Ott, W. A. Smith, J. Mater. Chem. A 2016, 4, 17891–17912.
- 91L. Girardi, G. A. Rizzi, L. Bigiani, D. Barreca, C. Maccato, C. Marega, G. Granozzi, ACS Appl. Mater. Interfaces 2020, 12, 31448–31458.
- 92M. K. Hossain, H. P. Sarker, P. Sotelo, U. Dang, I. Rodríguez-Gutiérrez, J. Blawat, A. Vali, W. Xie, G. Oskam, M. N. Huda, R. T. MacAluso, K. Rajeshwar, Chem. Mater. 2020, 32, 6247–6255.
- 93I. Khan, M. Ashraf, N. Baig, A. H. Hendi, Hybrid Photoactive Heterojunction and Method of Preparation Thereof, 2022, US11453599B1.
- 94D. K. Lee, K. S. Choi, Nat. Energy 2017, 3, 53–60.
- 95S. Mahey, R. Kumar, M. Sharma, V. Kumar, R. Bhardwaj, SN Appl. Sci. 2020, 2, 1–12.
- 96L. Leyssens, B. Vinck, C. Van Der Straeten, F. Wuyts, L. Maes, Toxicology 2017, 387, 43–56.