Polyanionic Compounds for Potassium-Ion Batteries
Tomooki Hosaka
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601 Japan
Search for more papers by this authorTomoaki Shimamura
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601 Japan
Search for more papers by this authorDr. Kei Kubota
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601 Japan
Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorCorresponding Author
Prof. Shinichi Komaba
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601 Japan
Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorTomooki Hosaka
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601 Japan
Search for more papers by this authorTomoaki Shimamura
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601 Japan
Search for more papers by this authorDr. Kei Kubota
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601 Japan
Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorCorresponding Author
Prof. Shinichi Komaba
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601 Japan
Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorAbstract
Lithium-ion batteries have the highest energy density among practical secondary batteries and are widely used for electronic devices, electric vehicles, and even stationary energy-storage systems. Along with the expansion of demand and applications, the concern about resources of lithium and cobalt is growing. Therefore, secondary batteries composed of abundant elements are required to complement lithium-ion batteries. In recent years, the development of potassium-ion batteries has attracted much attention, especially for large-scale energy storage. In order to realize potassium-ion batteries, various compounds are proposed and investigated as positive electrode materials, including layered transition-metal oxides, Prussian blue analogues, and polyanionic compounds. This article offers a review of polyanionic compounds which are typically composed of abundant elements and expected high operating potential. Furthermore, we deliver our new results to partially compensate for lack of studies and provide a future perspective.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
tcr201800143-sup-0001-misc_information.pdf979.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636–11682.
- 2J. Muldoon, C. B. Bucur, T. Gregory, Chem. Rev. 2014, 114, 11683–11720.
- 3
- 3aY. Marcus, Pure Appl. Chem. 1985, 57, 1129–1132;
- 3bS. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Electrochem. Commun. 2015, 60, 172–175.
- 4Z. Jian, W. Luo, X. Ji, J. Am. Chem. Soc. 2015, 137, 11566–11569.
- 5
- 5aI. Sultana, M. M. Rahman, Y. Chen, A. M. Glushenkov, Adv. Funct. Mater. 2017, 28, 1703857;
- 5bW. D. McCulloch, X. Ren, M. Yu, Z. Huang, Y. Wu, ACS Appl. Mater. Interfaces 2015, 7, 26158–26166.
- 6K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, J. Chen, Energy Environ. Sci. 2017, 10, 552–557.
- 7B. Jache, P. Adelhelm, Angew. Chem. 2014, 126, 10333–10337;
10.1002/ange.201403734 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 10169–10173.
- 8H. Kim, J. Kim, M. Bianchini, D.-H. Seo, J. Rodriguez-Garcia, G. Ceder, Adv. Energy Mater. 2017, 8, 1702384.
- 9
- 9aY. Hironaka, K. Kubota, S. Komaba, Chem. Commun. 2017, 53, 3693–3696;
- 9bH. Kim, J. C. Kim, S.-H. Bo, T. Shi, D.-H. Kwon, G. Ceder, Adv. Energy Mater. 2017, 7, 1700098.
- 10X. Wang, X. Xu, C. Niu, J. Meng, M. Huang, X. Liu, Z. Liu, L. Mai, Nano Lett. 2017, 17, 544–550.
- 11
- 11aC. Vaalma, G. A. Giffin, D. Buchholz, S. Passerini, J. Electrochem. Soc. 2016, 163, A 1295-A1299;
- 11bH. Kim, D.-H. Seo, J. C. Kim, S.-H. Bo, L. Liu, T. Shi, G. Ceder, Adv. Mater. 2017, 29, 1702480.
- 12
- 12aL. Xue, Y. Li, H. Gao, W. Zhou, X. Lü, W. Kaveevivitchai, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2017, 139, 2164–2167;
- 12bX. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Mater. Chem. A 2017, 5, 4325–4330.
- 13K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 2018, 18, 459–479.
- 14
- 14aH. Y. P. Hong, Mater. Res. Bull. 1976, 11, 173–182;
- 14bJ. B. Goodenough, H. Y. P. Hong, K.-J. A. Bulletin, Mater. Res. Bull. 1976, 11, 203–220.
- 15
- 15aA. Manthiram, J. B. Goodenough, J. Power Sources 1989, 26, 403–408;
- 15bA. Manthiram, J. B. Goodenough, J. Solid State Chem. 1987, 71, 349–360.
- 16C. Masquelier, L. Croguennec, Chem. Rev. 2013, 113, 6552–6591.
- 17A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188–1194.
- 18S. Nishimura, M. Nakamura, R. Natsui, A. Yamada, J. Am. Chem. Soc. 2010, 132, 13596–13597.
- 19B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, L. F. Nazar, Nat. Mater. 2007, 6, 749–753.
- 20N. Recham, J. N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J. M. Tarascon, Nat. Mater. 2010, 9, 68–74.
- 21P. Barpanda, L. Lander, S. Nishimura, A. Yamada, Adv. Energy Mater. 2018, 8, 1703055.
- 22
- 22aR. K. B. Gover, A. Bryan, P. Burns, J. Barker, Solid State Ionics 2006, 177, 1495–1500;
- 22bJ. Barker, K. B. R. Gover, P. Burns, A. J. Bryan, J. Electrochem. Soc. 2007, 154, A 882–A887;
- 22cL. S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J. Yamaki, J. Electrochem. Soc. 2010, 157, A 536–A543;
- 22dJ. Gopalakrishnan, K. K. Rangan, Chem. Mater. 1992, 4, 745–747;
- 22eM. Bianchini, N. Brisset, F. Fauth, E. Elkaim, E. Suard, C. Masquelier, L. Croguennec, Chem. Mater. 2014, 26, 4238–4247;
- 22fM. Bianchini, F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier, L. Croguennec, Chem. Mater. 2015, 27, 3009–3020.
- 23P. Barpanda, T. Ye, S.-I. Nishimura, S.-C. Chung, Y. Yamada, M. Okubo, H. Zhou, A. Yamada, Electrochem. Commun. 2012, 24, 116–119.
- 24P. Barpanda, G. Oyama, S. Nishimura, S. C. Chung, A. Yamada, Nat. Commun. 2014, 5, 4358.
- 25
- 25aK. Chihara, A. Katogi, K. Kubota, S. Komaba, Chem. Commun. 2017, 53, 5208–5211;
- 25bJ. Han, G.-N. Li, F. Liu, M. Wang, Y. Zhang, L. Hu, C. Dai, M. Xu, Chem. Commun. 2017, 53, 1805–1808;
- 25cX. Lin, J. Huang, H. Tan, J. Huang, B. Zhang, Energy Storage Mater. 2019, 16, 97–101;
- 25dW. Park, S. Han, C. Park, S. Hong, U. Han, S. Singh, Y. Jung, D. Ahn, K.-S. Sohn, M. Pyo, Adv. Energy Mater. 2018, 8, 1703099;
- 25eS. S. Fedotov, N. R. Khasanova, A. Samarin, O. A. Drozhzhin, D. Batuk, O. M. Karakulina, J. Hadermann, A. M. Abakumov, E. V. Antipov, Chem. Mater. 2016, 28, 411–415.
- 26O. V. Yakubovich, W. Massa, O. V. Dimitrova, Z. Anorg. Allg. Chem. 2005, 631, 2445–2449.
- 27M. Lujan, F. Kubel, H. Schmid, Z. Naturforsch. B 1995, 50, 1210–1214.
- 28A. C. Keates, Q. Wang, M. T. Weller, J. Solid State Chem. 2014, 210, 10–14.
- 29V. Mathew, S. Kim, J. Kang, J. Gim, J. Song, J. Baboo, W. Park, D. Ahn, J. Han, L. Gu, Y. Wang, Y.-S. Hu, Y.-K. Sun, J. Kim, NPG Asia Mater. 2014, 6, e 138.
- 30N. Recham, G. Rousse, M. T. Sougrati, J. N. Chotard, C. Frayret, S. Mariyappan, B. C. Melot, J. C. Jumas, J. M. Tarascon, Chem. Mater. 2012, 24, 4363–4370.
- 31L. Lander, G. Rousse, A. M. Abakumov, M. Sougrati, G. van Tendeloo, J. M. Tarascon, J. Mater. Chem. A 2015, 3, 19754–19764.
- 32L. Lander, G. Rousse, D. Batuk, C. V. Colin, D. Corte, J.-M. Tarascon, Inorg. Chem. 2017, 56, 2013–2021.
- 33A. Yamada, S. C. Chung, K. Hinokuma, J. Electrochem. Soc. 2001, 148, A 224–A229.
- 34P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher, Chem. Mater. 2010, 22, 4126–4128.
- 35G. Kobayashi, S. i. Nishimura, M. S. Park, R. Kanno, M. Yashima, T. Ida, A. Yamada, Adv. Funct. Mater. 2009, 19, 395–403.
- 36A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1609–1613.
- 37E. Hafidi, M. Omari, M. Omari, A. Bentayeb, J. Bennazha, E. A. Maadi, M. Chehbouni, Arabian J. Chem. 2013, 6, 253–263.
- 38
- 38aA. E. L. Maadi, A. Boukhari, E. M. Holt, S. Flandrois, C.R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron. 1994, 318, 765–770;
- 38bJ. Bennazha, A. Boukhari, E. M. Holt, Solid State Sci. 1999, 1, 373–380.
- 39
- 39aA. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J. O. Thomas, Electrochem. Commun. 2005, 7, 156–160;
- 39bZ. Gong, Y. Yang, Energy Environ. Sci. 2011, 4, 3223–3242.
- 40Y. U. Park, D. H. Seo, H. Kim, J. Kim, S. Lee, B. Kim, K. Kang, Adv. Funct. Mater. 2014, 24, 4603–4614.
- 41
- 41aT. Mandai, K. Yoshida, S. Tsuzuki, R. Nozawa, H. Masu, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. B 2015, 119, 1523–1534;
- 41bT. Hosaka, K. Kubota, H. Kojima, S. Komaba, Chem. Commun. 2018, 54, 8387–8390.
- 42K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.