Solvate Ionic Liquids for Li, Na, K, and Mg Batteries
Toshihiko Mandai
Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551 Japan
Search for more papers by this authorKaoru Dokko
Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan
Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyoto, 615-8510 Japan
Search for more papers by this authorMasayoshi Watanabe
Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan
Search for more papers by this authorToshihiko Mandai
Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551 Japan
Search for more papers by this authorKaoru Dokko
Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan
Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyoto, 615-8510 Japan
Search for more papers by this authorMasayoshi Watanabe
Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan
Search for more papers by this authorAbstract
From the viewpoint of element strategy, non-Li batteries with promising negative and positive electrodes have been widely studied to support a sustainable society. To develop non-Li batteries having high energy density, research on electrolyte materials is pivotal. Solvate ionic liquids (SILs) are an emerging class of electrolytes possessing somewhat superior properties for battery applications compared to conventional ionic liquid electrolytes. In this account, we describe our recent efforts regarding SIL-based electrolytes for Li, Na, K, and Mg batteries with respect to structural, physicochemical, and electrochemical characteristics. Systematic studies based on crystallography and Raman spectroscopy combined with thermal/electrochemical stability analysis showed that the balance of competitive cation−anion and cation−solvent interactions predominates the stability of the solvate cations. We also demonstrated battery applications of SILs as electrolytes for non-Li batteries, particularly for Na batteries.
References
- 1N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 2012, 11, 512–517.
- 2N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636–11682.
- 3J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 2017, 46, 3529–3614
- 4P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102–120; Angew. Chem. 2018, 130, 106–126.
- 5S. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma, L. A. Archer, Nat. Commun. 2016, 7, 11722.
- 6K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 2018, 18, 459–479.
- 7S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Electrochem. Commun. 2015, 60, 172–175.
- 8C. Vaalma, D. Buchholz, S. Passerini, Curr. Opin. Electrochem. 2018, 9, 41–48.
- 9J. Muldoon, C. B. Bucur, T. Gregory, Chem. Rev. 2014, 114, 11683–11720.
- 10D. Aurbach, Z. Lu, A. Shechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724–727.
- 11Z. Z. -Karger, X. Zhao, D. Wang, T. Diemant, R. J. Behm, M. Fichtner, Adv. Energy Mater. 2014, 1401155.
- 12A. Ponrouch, C. Frontera, F. Barde, M. R. Palacin, Nat. Mater. 2016, 15, 169–172.
- 13D. Wang, X. Gao, Y. Chen, L. Jin, C. Kuss, P. G. Bruce, Nat. Mater. 2018, 17, 16–20.
- 14M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chem, J. Yang, B.-J. Hwang, H. Dai, Nature 2015, 520, 324–328.
- 15M. Angell, C.-J. Pan, Y. Rong, C. Yuan, M.-C. Lin, B.-J. Hwang, H. Dai, Proc. Natl. Acad. Sci. India 2017, 113, 834–839.
- 16T. Mandai, P. Johansson, J. Mater. Chem. A 2015, 3, 12230–12239.
- 17G. A. Giffin, J. Mater. Chem. A 2016, 4, 13378–13389.
- 18M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev. 2017, 117, 7190–7239.
- 19C. A. Angell, Y. Ansari, Z. F. Zhao, Faraday Discuss. 2012, 154, 9–27.
- 20T. Mandai, K. Yoshida, K. Ueno, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2014, 16, 8761–8772.
- 21T. Tamura, K. Yoshida, T. Hachida, M. Tsuchiya, M. Nakamura, Y. Kazue, N. Tachikawa, K. Dokko, M. Watanabe, Chem. Lett. 2010, 39, 753–755.
- 22K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2011, 115, 18384–18394.
- 23K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 113, 13121–13129
- 24K. Ueno, K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. B 2012, 116, 11323–11331.
- 25C. Zhang, K. Ueno, A. Yamazaki, K. Yoshida, H. Moon, T. Mandai, Y. Umebayashi, K. Dokko, M. Watanabe, J. Phys. Chem. B 2014, 118, 5144–5153.
- 26S. Tsuzuki, W. Shinoda, M. Matsugami, Y. Umebayashi, K. Ueno, T. Mandai, S. Seki, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2015, 17, 126–129.
- 27K. Ueno, R. Tatara, S Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2015, 17, 8248–8257.
- 28T. Mandai, K. Yoshida, S. Tsuzuki, R. Nozawa, H. Masu, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. B 2015, 119, 1523–1534.
- 29M. Watanabe, K. Dokko, K. Ueno, M. L. Thomas, Bull. Chem. Soc. Jpn. 2018, accepted. doi: 10.1246/bcsj.20180216.
- 30Y. Choquette, G. Brisard, M. Parent, D. Brouillette, G. Perron, J. E. Desnoyers, M. Armand, D. Gravel, N. Slougi, J. Electrochem. Soc. 1998, 145, 3500–3507.
- 31D. Brouillette, D. E. Irish, N. J. Taylor, G. Perron, M. Odziemkowski, J. E. Desnoyers, Phys. Chem. Chem. Phys. 2002, 4, 6063–6071.
- 32W. A. Henderson, F. McKenna, M. A. Khan, N. R. Brooks, V. G. Young Jr., R. Frech, Chem. Mater. 2005, 17, 2284–2289.
- 33W. A. Henderson, N. R. Brooks, W. W. Brennessel, V. G. Young Jr., Chem. Mater. 2003, 15, 4679–4684.
- 34W. A. Henderson, N. R. Brooks, V. G. Young Jr., R. Frech, Chem. Mater. 2003, 15, 4685–4690.
- 35T. M. Papperfus, W. A. Henderson, B. B. Owns, K. R. Mann, W. H. Smyrl, J. Electrochem. Soc. 2004, 151, A 209–A215
- 36J. Grondin, J.-L. Lassègues, M. Chami, L. Servant, D. Talaga, W. A. Henderson, Phys. Chem. Chem. Phys. 2004, 6, 4260–4267.
- 37A. Dolan, D. A. Sherman, R. Atkin, G. G. Warr, ChemPhysChem 2016, 17, 3096–3101.
- 38P. Jankowski, M. Dranka, G. Z. Żukowska, J. Zachara, J. Phys. Chem. C 2015, 119, 9108–9116.
- 39P. Jankowski, M. Dranka, G. Z. Żukowska, J. Phys. Chem. C 2015, 119, 10247–10254.
- 40G. Vanhoutte, N. R. Brooks, S. Schaltin, B. Opperdoes, L. V. Meervelt, J.-P. Locquet, P. M. Vereecken, J. Fransaer, K. Binnemans, J. Phys. Chem. C 2014, 118, 20152–20162.
- 41S. Tsuzuki, W. Shinoda, S. Seki, Y. Umebayashi, K. Yoshida, K. Dokko, M. Watanabe, ChemPhysChem 2013, 14, 1993–2001.
- 42K. Ueno, J.-W. Park, A. Yamazaki, T. Mandai, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2013, 117, 20509–20516.
- 43H. Moon T. Mandai, R. Tatara, K. Ueno, A. Yamazaki, K. Yoshida, S. Seki, K. Dokko, M. Watanabe, J. Phys. Chem. C 2015, 119, 3957–3970.
- 44K. Ikeda, S. Terada, T. Mandai, K. Ueno, K. Dokko, M. Watanabe, Electrochemistry 2015, 83, 914–917.
- 45H.-M. Kwon, M. L. Thomas, R. Tatara, A. Nakanishi, K. Dokko, M. Watanabe, Chem. Lett. 2017, 46, 573–576.
- 46H.-M. Kwon, M. L. Thomas, R. Tatara, Y. Oda, Y. Kobayashi, A. Nakanishi, K. Ueno, K. Dokko, M. Watanabe, ACS Appl. Mater. Interfaces 2017, 9, 6014–6021.
- 47T. Mandai, R. Nozawa, S. Tsuzuki, K. Yoshida, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. B 2013, 117, 15072–15085.
- 48S. Terada, T. Mandai, R. Nozawa, K. Yoshida, K. Ueno, S. Tsuzuki, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2014, 16, 11737–11746.
- 49S. Terada, H. Susa, S. Tsuzuki, T. Mandai, K. Ueno, Y. Umebayashi, K. Dokko, M. Watanabe, J. Phys. Chem. C 2016, 120, 23339–23350.
- 50S. Terada, H. Susa, S. Tsuzuki, T. Mandai, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. C, 2018, 122, 16589–16599.
- 51T. Mandai, S. Tsuzuki, K. Ueno, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2015, 17, 2838–2849.
- 52S. Terada, T. Mandai, S. Suzuki, S. Tsuzuki, K. Watanabe, Y. Kamei, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. C 2016, 120, 1353–1365.
- 53S. Tsuzuki, T. Mandai, S. Suzuki, W. Shinoda, T. Nakamura, T. Morishita, K. Ueno, S. Seki, Y. Umebayashi, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2017, 19, 18262–18272.
- 54K. Hashimoto, S. Suzuki, M. L. Thomas, T. Mandai, S. Tsuzuki, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2018, 20, 7998–8007.
- 55W. Huang, R. Frech, P. Johansson, J. Lindgren, Electrochim. Acta 1995, 40, 2147–2151.
- 56P. Geysens, V S. Rangasamy, S. Thayumanasundaram, K. Robeyns, L. V. Meervelt, J.-P. Locquet, J. Fransaer, K. Binnemans, J. Phys. Chem. B 2018, 122, 275–289.
- 57T. Mandai, H. Masu, P. Johansson, Dalton Trans. 2015, 44, 11259–11263.
- 58C. Zhang, D. Ainsworth, Y. G. Andreev, P. G. Bruce, J. Am. Chem. Soc. 2007, 129, 8700–8701.
- 59C. P. Rhodes, R. Frech, Macromolecules 2001, 34, 2660–2666.
- 60P. Johansson, J. Grondin, J.-C. Lassègues, J. Phys. Chem. A 2010, 114, 10700–10705.
- 61P. Jankowski, M. Dranka, W. Wieczorek, P. Johansson, J. Phys. Chem. Lett. 2017, 8, 3678–3682.
- 62M. Hayyan, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, T. X. Mei, J. Ind. Eng. Chem. 2013, 19, 106–112.
- 63K. Dokko, N. Tachikawa, K. Yamauchi, M. Tsuchiya, A. Yamazaki, E. Takashima, J.-W. Park, K. Ueno, S Seki, N. Serizawa, M. Watanabe, J. Electrochem. Soc. 2013, 160, A 1304–A1310.
- 64S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater. 2011, 21, 3859–3867.
- 65A. Ponrouch, A. R. Goni, M. R. Palacin, Electrochem. Commun. 2013, 27, 85–88.
- 66C. Ding, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, Electrochim. Acta 2015, 176, 344–349.
- 67K. Westman, R. Dugas, P. Jankowski, W. Wieczorek, G. Gachot, M. Morcrette, E. Irisarri, A. Pourouch, M. R. Palacin, J.-M. Tarascon, P. Johansson, Appl. Energy 2018, 1, 2671–2680.
- 68N. N. Rajput, X. Qu, N. Sa, A. K. Burrell, K. A. Persson, J. Am. Chem. Soc. 2015, 137, 3411–3420.
- 69S. Bulut, P. Klose, I. Krossing, Dalton Trans. 2011, 40, 8114–8124.
- 70A. P. -Marczewska, T. Trzeciak, A. Bitner, L. Niedzicki, M. Dranka, G. Z. Zukowska, M. Marcinek, W. Wieczorek, Chem. Mater. 2014, 26, 4908–4914.
- 71M. M. Archuleta, J. Power Sources 1995, 54, 138–142.
- 72P. Yoganantharajar, D. J. Eyckens, J. L. Pedrina, L. C. Henderson, W. Gibert, New J. Chem. 2016, 40, 6559–6603.
- 73K. Takada, Y. Yamada, E. Watanabe, J. Wang, K. Sodeyama, Y. Tateyama, K. Hirata, T. Kawase, A. Yamada, ACS Appl. Mater. Interfaces 2017, 9, 33802–33809.
- 74M. Liu, Z. Rong, R. Malik, P. Canepa, A. Jain, G. Ceder, K. A. Persson, Energy Environ. Sci. 2015, 8, 964–974.
- 75V. Duffort, X Sun, L. F. Nazar, Chem. Commun. 2016, 52, 12458–12461.
- 76T. Mandai, Y. Akita, S. Yagi, M. Egashira, H. Munakata, K. Kanamura, J. Mater. Chem. A, 2017, 5, 3152–3156.
- 77M. Steichen, N. R. Brooks, L. V. Meervelt, J Fransaer, K. Binnemans, Dalton Trans. 2014, 43, 12329–12341.
- 78S. Schaltin, N. R. Brooks, J. Sniekers, L. V. Meervelt, K. Binnemans, J. Fransaer, Chem. Commun. 2014, 50, 10248–10250.
- 79T. Mandai, P. Johansson, J. Phys. Chem. C 2016, 120, 21285–21292.