An application of confined concrete modeling to three-dimensional nonlinear finite element analysis: The example of tunnel boring machine lining joints
Corresponding Author
Cosimo Iasiello
Department of Continuum Mechanics and Structures, Technical University of Madrid, Madrid, Spain
Correspondence
Cosimo Iasiello, Technical University of Madrid, Profesor Aranguren, s/n. 28040 Madrid, Spain.
Email: [email protected]
Search for more papers by this authorAlejandro Pérez Caldentey
Department of Continuum Mechanics and Structures, Technical University of Madrid, Madrid, Spain
R+D Technical Director, FHECOR Consulting Engineers, Madrid, Spain
Search for more papers by this authorJan Ĉervenka
Executive Director, Ĉervenka Consulting, Praha 5, Czech Republic
Search for more papers by this authorDobromil Pryl
Consulting Engineer, Ĉervenka Consulting, Praha 5, Czech Republic
Search for more papers by this authorCorresponding Author
Cosimo Iasiello
Department of Continuum Mechanics and Structures, Technical University of Madrid, Madrid, Spain
Correspondence
Cosimo Iasiello, Technical University of Madrid, Profesor Aranguren, s/n. 28040 Madrid, Spain.
Email: [email protected]
Search for more papers by this authorAlejandro Pérez Caldentey
Department of Continuum Mechanics and Structures, Technical University of Madrid, Madrid, Spain
R+D Technical Director, FHECOR Consulting Engineers, Madrid, Spain
Search for more papers by this authorJan Ĉervenka
Executive Director, Ĉervenka Consulting, Praha 5, Czech Republic
Search for more papers by this authorDobromil Pryl
Consulting Engineer, Ĉervenka Consulting, Praha 5, Czech Republic
Search for more papers by this authorDiscussion on this paper must be submitted within two months of the print publication. The discussion will then be published in print, along with the authors’ closure, if any, approximately nine months after the print publication.
Abstract
The aim of this paper is to present through a practical example, some recommendations to properly model confined concrete in three-dimensional nonlinear finite element analysis. The example chosen is of particular interest for tunneling and structural engineers as it compromises the joints between segments of the concrete lining used with the tunnel boring machine technique. These sections are designed to transmit high pressures, sometimes exceeding the Standards' recommendations. To carry out the nonlinear finite element analyses (NLFEAs) a dedicated software, was employed. A discussion about which parameters play a fundamental role to efficiently model the problem is carried out. Finally, a comparison between NLFEA results and an experimental campaign is presented highlighting the differences in terms of stress values within the steel bars, the failure mechanism and evaluation of the contribution of steel to the resistance of confined concrete.
REFERENCES
- 1Sheikh SA, Uzumeri SM. Strength and ductility of tied concrete columns. J Struct Div ASCE. 1980; 106(ST5): 1079–1102.
10.1061/JSDEAG.0005416 Google Scholar
- 2Scott BD, Park R, Priestley MJN. Stress-strain behaviour of concrete confined by overlapping hoops at low and high strain rates. ACI J. 1982; 79(1): 13–27.
- 3Liu J, Foster SJ. A three-dimensional finite element model for confined concrete structures. Comput Struct. 2000; 77: 441–451.
- 4Mander JB, Priestley MJN, Park R. Behaviour of hollow reinforced concrete columns. Bull N Z Natl Soc Earthq Eng. 1983; 16(4): 273–290.
- 5Menétrey P, Willam KJ. Triaxial failure criterion for concrete and its generalization. ACI Struct J. 1995; 92(3): 311–318.
- 6Montoya E, Vecchio FJ, Sheikh SA. Compression field modelling of confined concrete. Struct Eng Mech. 2001; 12(3): 231–248.
- 7Kwon M, Spacone E. Three-dimensional finite element analyses of reinforced concrete columns. Comput Struct. 2002; 80: 199–212.
- 8Papanikolaou V, Kappos A. Modelling confinement in concrete columns and bridge piers through 3D nonlinear finite element analysis. Fib symposium “keep Concrete Attractive,” Budapest; 2005.
- 9Sheikh SA, Uzumeri SM. Analytical model for concrete confinement in tied columns. J Struct Div ASCE. 1982; 108(ST12): 2703–2722.
10.1061/JSDEAG.0006100 Google Scholar
- 10Thorenfeldt E, Tomaszewicz A, Jensen JJ. Mechanical properties of high strength concrete and application in design. Proceedings of the Symposium Utilisation of High Strength Concrete, Tapir, Trondheim. Norway: I. Holand (Edition), 1987; p. 149–159.
- 11Van Mier, JGM. Strain-softening of concrete under multiaxial loading conditions [PhD thesis] Eindhoven University, Eindhoven; 1984.
- 12Montoya E, Vecchio FJ, Sheikh SA. Numerical evaluation of the behaviour of steel and FRP confined concrete columns using compression field modelling. Eng Struct. 2004; 26(2004): 1535–1545.
- 13Liu X, Zhang C, Zhang C, Yuan Y. Ultimate load-carrying capacity of the longitudinal joints in segmental tunnel linings. Struct Concr. 2017; 18(5): 693–709.
- 14Kalliauer J, Schlappal T, Vill M, Mang H, Pichler B. Bearing capacity of concrete hinges subjected to eccentric compression: Multiscale structural analysis of experiments. Acta Mech. 2018; 229(2): 849–866.
- 15Tvede-Jensen B, Faurschou M, Kasper T. A modelling approach for joint rotations of segmental concrete tunnel linings. Tunn Undergr Space Technol. 2017; 67: 61–67.
- 16Li X, Yan Z, Wang Z, Zhu H. A progressive model to simulate the full mechanical behavior of concrete segmental lining longitudinal joints. Eng Struct. 2015; 93: 97–113.
- 17Zhang JL, Schlappal T, Yuan Y, Mang HA, Pichler B. The influence of interfacial joints on the structural behavior of segmental tunnel rings subjected to ground pressure. Tunn Undergr Space Technol. 2019; 84: 538–556.
- 18Schreyer W. Eignungsprüfungen für die Tübbingauskleidung der 4. Röhre Elbtunnel. Stuva 1997 Forschung + Praxis, number 37; 1997
- 19 STUVA. Eignungsprüfungen 4. Röhre Elbtunnel. Versuche zur Verdrehsteifigkeit. September, F4R-KE62, 1996.
- 20 German Tunneling Committee (ITA-AITES). Recommendations for the design, production and installation of segmental ring. German: DAUB, 2013.
- 21 fib. Bulletin No 61 (2011): “Design example for strut and tie models” Technical report Party 1.1–3. Lausanne: fib, 2011.
- 22 Comité Européen de Normalisation (CEN). EN 206-1: Concrete Part 1: Specification, performance, production and conformity. Brussels: Comité Européen de Normalisation (CEN), 2000.
- 23Iasiello C. Behaviour of transversal joints in prefabricated tunnel linings. Experimental and theoretical study [PhD thesis], Technical University of Madrid; 2017
- 24 European Committee for Standardization (CEN). ENV 1992 (2004): Eurocode-2: Design of concrete structures—Part 1-1: General rules and rules for buildings. Brussels: European Committee for Standardization (CEN), 2006.
- 25Leonhardt F, Mönnig E. Vorlesungen über Massivbau: Teil 2 Sonderfälle der Bemessung im Stahlbetonbau. Berlin: Springer, 1975.
10.1007/978-3-662-00626-9 Google Scholar
- 26Spieth HP. Das Verhalten von Beton unter hoher örtlicher Pressung und Teilbelastung unter besonderer Berücksichtigung von Spannbetonverankerungen [dissertation] Technical University of Stuttgart; 1959
- 27 Cervenka Consulting. ATENA program documentation. Czech Republic: Prague, 2009.
- 28 Ĉervenka Consulting s.r.o. “Troubleshooting manual” ATENA Program documentation Part 11 (2016). Czech Republic: Prague, 2009.
- 29Cervenka J, Cervenka V. Three-dimensional combined fracture-plastic material model for concrete. Proceedings of the 5th US National Congress on Computational Mechanics, Boulder, CO. USA: University of Colorado at Boulder, 1999.
- 30 Cervenka Consulting. ATENA theory. Prague: Czech Republic, 2009.
- 31Pryl D, Cervenka J. ATENA Program Documentation Part 11—Troubleshooting Manual. Prague, Czech Republic: Cervenka Consulting s.r.o., 2014.
- 32Kupfer H, Hilsdorf H, Rusch H. Behaviour of concrete under biaxial loading. ACI J. 1969; 66(8): 656–666.
- 33Lubliner J, Oliver J, Oller S, Oñate E. A plastic damage model for concrete. Int J Solids Struct. 1989; 25(3): 299–326.
- 34 fib. Bulletin No 1: “Textbook on behavior, design and performance updated knowledge of the CEB/FIP Model Code 1990”. Vol 1. Lausanne: fib, 1999.
- 35Eriksson I, Karlsson N. Non-linear assessment of concrete bridge slab loaded to failure [master thesis]. Royal Institute of Technology (KTH) Department of Civil and Architectural Engineering, Stockholm, Sweden; 2016.
- 36Cervenka V, Jendele L, Cervenka J. ATENA Program Documentation Part 1—Theory. Chez republic: Cervenka Consulting s.r.o., 2016.
- 37 fib. Model code for concrete structures 2010. Lausanne Switzerland: Ernst & Sohn, 2013.
10.1002/9783433604090 Google Scholar
- 38Pizzochero A. Calibration and validation of Atena concrete material model with respect to experimental data [master thesis]. Dipartimento di Ingegneria civile, edile ed ambientale Universitá degli studi di Padova; 2017.
- 39Grassl P, Lundgren K, Gylltoft K. Concrete in compression: A plasticity theory with a novel hardening law. Int J Solids Struct. 2002; 39: 5205–5223.
- 40Cervenka V et al. Mesh sensitivity effects in smeared finite element analysis of concrete fracture. D-79104 Freiburg: Fracture Mechanics of Concrete Structures, 1995.