Bridge damage detection via improved completed ensemble empirical mode decomposition with adaptive noise and machine learning algorithms
Corresponding Author
Rick M. Delgadillo
Department of Civil and Environmental Engineering, Technical University of Catalonia (BarcelonaTech), Barcelona, Spain
Correspondence
Rick M. Delgadillo, Department of Civil and Environmental Engineering, Technical University of Catalonia (BarcelonaTech), Campus Nord, C1 building, Jordi Girona, 1-3, 08034 Barcelona, Spain.
Email: [email protected]
Search for more papers by this authorJoan R. Casas
Department of Civil and Environmental Engineering, Technical University of Catalonia (BarcelonaTech), Barcelona, Spain
Search for more papers by this authorCorresponding Author
Rick M. Delgadillo
Department of Civil and Environmental Engineering, Technical University of Catalonia (BarcelonaTech), Barcelona, Spain
Correspondence
Rick M. Delgadillo, Department of Civil and Environmental Engineering, Technical University of Catalonia (BarcelonaTech), Campus Nord, C1 building, Jordi Girona, 1-3, 08034 Barcelona, Spain.
Email: [email protected]
Search for more papers by this authorJoan R. Casas
Department of Civil and Environmental Engineering, Technical University of Catalonia (BarcelonaTech), Barcelona, Spain
Search for more papers by this authorSummary
Structural health monitoring field is growing in the use of more modern techniques and tools in order to identify damages in civil structures. The improvements in signal processing techniques and data mining have, recently, been employed due to their powerful computational ability to detect damage in bridges. Despite the majority of researchers have been studying laboratory-scale implementations and theoretical developments, the limited data to identify structural faults in real bridges are still a problem. The current study presents a novel approach for damage identification by using two improved methods such as decomposition techniques and machine learning algorithms. Since the data obtained from the traffic vibration in real bridges are non-linear and time varying, the Hilbert–Huang transform is used to process the vibration data. Additionally, a phenomenon of mode mixing is presented in the current decomposition methods, such as empirical mode decomposition (EMD). Therefore, a novel improved completed ensemble EMD with adaptive noise (ICEEMDAN) was adopted. After the signal decomposition and identification of the damage parameter, a symbolic data analysis and clustering-based approach were developed. Additionally, an unsupervised machine learning algorithm was used to group substructures with similar behavior and then detect damages. This learning method was used for automatically classifying the damages using a moving windows process sequentially applied to the structural response of the bridge. The validity of the approach is demonstrated using real data collected from a truss bridge. The results show that the proposed mixed method was effective and can endow better results in bridge health monitoring.
REFERENCES
- 1An Y, Chatzi E, Sim SH, Laflamme S, Blachowski B, Ou J. Recent progress and future trends on damage identification methods for bridge structures. Struct Control Health Monit. 2019; 26(10):e2416. doi:10.1002/stc.2416
- 2Azim MR, Gül M. Damage detection of steel girder railway bridges utilizing operational vibration response. Struct Control Health Monit. 2019; 26(11):e2447.
- 3Huang J, Li D, Li H, Song G, Liang Y. Damage identification of a large cable-stayed bridge with novel cointegrated Kalman filter method under changing environments. Struct Control Health Monit. 2018; 25(5):e2152. doi:10.1002/stc.2152
- 4Chen B, Zhao SL, Li PY. Application of Hilbert-Huang transform in structural health monitoring: a state-of-the-art re-view. Math Probl Eng. 2014; 2014: 1-22. doi:10.1155/2014/317954
- 5Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc a: Math Phys Eng Sci. 1998; 454(1971): 903-995. doi:10.1098/rspa.1998.0193
- 6Huang NE, Shen Z, Long SR. A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech. 1999; 31(1): 417-457. doi:10.1146/annurev.fluid.31.1.417
- 7Wu Z, Huang NE. A study of the characteristics of white noise using the empirical mode decomposition method. Proc R Soc a: Math Phys Eng Sci. 2004; 460(2046): 1597-1611. doi:10.1098/rspa.2003.1221
- 8Huang NE, Long SR, Shen Z. The mechanism for frequency downshift. Adv Appl Mech. 1996; 35:59. doi:10.1016/S0065-2156(08)70076-0
10.1016/S0065?2156(08)70076?0 Google Scholar
- 9Vincent HT, Hu SL, Hou Z. Damage detection using empirical mode decomposition method and a comparison with wavelet analysis. In: Proceedings of the 2nd International Workshop on Structural Health Monitoring. Standford: Stanford University; 1999: 891-900.
- 10Yan B, Miyamoto A. A comparative study of modal parameter identification based on wavelet and Hilbert–Huang transforms. Comput Aided Civ Inf Eng. 2006; 21(1): 9-23. doi:10.1111/j.1467-8667.2005.00413.x
- 11Qu CZ, Lian XW. Damage identification for transmission towers based on HHT. Energy Proc. 2012; 17: 1390-1394. doi:10.1016/j.egypro.2012.02.257
10.1016/j.egypro.2012.02.257 Google Scholar
- 12Chen J, Xu YL, Zhang RC. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method. J Wind Eng Ind Aerodyn. 2004; 92(10): 805-827. doi:10.1016/j.jweia.2004.04.003
- 13Huang NE, Huang K, Chiang WL. HHT-based bridge structural health-monitoring method. In: Hilbert–Huang Transform and its Applications. World Scientific; 2014: 337-361.
10.1142/9789814508247_0015 Google Scholar
- 14Zhang RR, King R, Olson L, Xu YL. Dynamic response of the Trinity River Relief Bridge to controlled pile damage: modeling and experimental data analysis comparing Fourier and Hilbert–Huang techniques. J Sound Vib. 2005; 285(4–5): 1049-1070. doi:10.1016/j.jsv.2004.09.032
- 15Wu Z, Huang NE. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal. 2009; 1(01): 1-41. doi:10.1142/S1793536909000047
10.1142/S1793536909000047 Google Scholar
- 16Yeh JR, Shieh JS, Huang NE. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal. 2010; 2(02): 135-156. doi:10.1142/S1793536910000422
10.1142/S1793536910000422 Google Scholar
- 17Lin J. Improved ensemble empirical mode decomposition and its applications to gearbox fault signal processing. Int J Comput Dent. 2012; 9(6): 194-199.
- 18Zheng J, Cheng J, Yang Y. Partly ensemble empirical mode decomposition: an improved noise-assisted method for eliminating mode mixing. Signal Process. 2014; 96: 362-374. doi:10.1016/j.sigpro.2013.09.013
- 19Torres ME, Colominas MA, Schlotthauer G, Flandrin P. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2011: 4144-4147.
10.1109/ICASSP.2011.5947265 Google Scholar
- 20Delgadillo RM, Casas JR. SHM of bridges by improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and clustering. Enabling Intelligent Life-cycle Health Management for Industry Internet of Things (IIOT). Proceedings of IWSHM; 2019: 2111-2118.
- 21Colominas MA, Schlotthauer G, Torres ME. Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed Signal Process Control. 2014; 14: 19-29. doi:10.1016/j.bspc.2014.06.009
- 22Moughty JJ, Casas JR. Damage identification of bridge structures using the Hilbert-Huang transform. In Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision: Proceedings of the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018); 2018: 28-31.
- 23Delgadillo RM, Casas JR. Non-modal vibration-based methods for bridge damage identification. Struct Infrastruct Eng. 2019: 1-22.
- 24Fugate ML, Sohn H, Farrar CR. Unsupervised learning methods for vibration-based damage detection. In Proceedings of 18th International Modal Analysis Conference–IMAC; 2000: 18.
- 25Cremona C, Santos J. Structural health monitoring as a big-data problem. Struct Eng Int. 2018; 28(3): 243-254. doi:10.1080/10168664.2018.1461536
- 26Yu L, Zhu JH, Yu LL. Structural damage detection in a truss bridge model using fuzzy clustering and measured FRF data reduced by principal component projection. Adv Struct Eng. 2013; 16(1): 207-217. doi:10.1260/1369-4332.16.1.207
10.1260/1369?4332.16.1.207 Google Scholar
- 27Toivola J, Prada MA, Hollmén J. Novelty detection in projected spaces for structural health monitoring. In: International Symposium on Intelligent Data Analysis. Berlin, Heidelberg: Springer; 2010: 208-219.
10.1007/978-3-642-13062-5_20 Google Scholar
- 28Cho S, Jo H, Jang S, et al. Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses. Smart Struct Syst. 2010; 6(5–6): 461-480. doi:10.12989/sss.2010.6.5_6.461
- 29Santos J, Crémona C, Orcesi A, Silveira P. Baseline-free real-time novelty detection using vibration-based symbolic features. EVACES'13. 2013: 1-8.
- 30Santos JP, Orcesi AD, Crémona C, Silveira P. Baseline-free real-time assessment of structural changes. Struct Infrastruct Eng. 2015; 11(2): 145-161. doi:10.1080/15732479.2013.858169
- 31Santos JP, Crémona C, Calado L, Silveira P, Orcesi AD. On-line unsupervised detection of early damage. Struct Control Health Monit. 2016; 23(7): 1047-1069. doi:10.1002/stc.1825
- 32Diez A, Khoa NL, Alamdari MM, Wang Y, Chen F, Runcie P. A clustering approach for structural health monitoring on bridges. J Civ Struct Health Monit. 2016; 6(3): 429-445. doi:10.1007/s13349-016-0160-0
- 33Zhu L, Malekjafarian A. On the use of ensemble empirical mode decomposition for the identification of bridge frequency from the responses measured in a passing vehicle. Inf Dent. 2019; 4(2):32. doi:10.3390/infrastructures4020032
10.3390/infrastructures4020032 Google Scholar
- 34Yang JN, Lei Y, Lin S, Huang N. Hilbert-Huang based approach for structural damage detection. J Eng Mech. 2004; 130(1): 85-95. doi:10.1061/(ASCE)0733-9399(2004)130:1(85)
- 35Khan I, Shan D, Li Q, Jie H. Continuous modal parameter identification of cable-stayed bridges based on a novel improved ensemble empirical mode decomposition. Struct Infrastruct Eng. 2018; 14(2): 177-191. doi:10.1080/15732479.2017.1338734
- 36Kunwar A, Jha R, Whelan M, Janoyan K. Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations. Struct Control Health Monit. 2013; 20(1): 1-15. doi:10.1002/stc.466
- 37Reddy M, Krishna P. Innovative method of empirical mode decomposition as spatial tool for structural damage identification. Struct Control Health Monit. 2015; 22(2): 365-373. doi:10.1002/stc.1676
- 38Cury A. Techniques d'anormalité appliquées à la surveillance de santé structurale. Paris: Université Paris-Est; 2010.
- 39Diday E, Noirhomme-Fraiture M. Symbolic Data Analysis and the SODAS Software. John Wiley & Sons; 2008. doi:10.1002/9780470723562.
- 40Ichino M, Yaguchi H. Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Trans Syst Man Cybern: Syst. 1994; 24(4): 698-708. doi:10.1109/21.286391
- 41Rendón E, Abundez I, Arizmendi A, Quiroz EM. Internal versus external cluster validation indexes. Int J Comput Commun Control. 2011; 5(1): 27-34.
- 42Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Stanford; 2006: 1027-1035.
- 43Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987; 20: 53-65. doi:10.1016/0377-0427(87)90125-7
- 44Santos JP, Cremona C, Silveira P, Calado L. Real-time damage detection based on pattern recognition. Struct Concr. 2016; 17(3): 338-354. doi:10.1002/suco.201500092
- 45Gowda KC, Diday E. Symbolic clustering using a new dissimilarity measure. Pattern Recognit. 1991; 24(6): 567-578. doi:10.1016/0031-3203(91)90022-W
- 46Rousseeuw PJ, Croux C. Alternatives to the median absolute deviation. J am Stat Assoc. 1993; 88(424): 1273-1283. doi:10.1080/01621459.1993.10476408
- 47Chang KC, Kim CW. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Eng Struct. 2016; 122: 156-173. doi:10.1016/j.engstruct.2016.04.057
- 48Mousavi AA, Zhang C, Masri SF, Gholipour G. Structural damage localization and quantification based on a CEEMDAN Hilbert transform neural network approach: a model steel truss bridge case study. Sensors. 2020; 20(5):1271. doi:10.3390/s20051271
- 49Mousavi AA, Zhang C, Masri SF, Gholipour G. Structural damage detection method based on the complete ensemble empirical mode decomposition with adaptive noise: a model steel truss bridge case study. Struct Health Monit. 2021;14759217211013535. doi:10.1177/14759217211013535
- 50Kim CW, Chang KC, Kitauchi S, McGetrick PJ, Hashimoto K, Sugiura K. Changes in modal parameters of a steel truss bridge due to artificial damage. Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures: Proceedings of ICOSSAR; 2014: 16–20. doi:10.1201/b16387-541.
- 51Santos J, Cremona C, Orcesi A, Silveira P. Multivariate statistical analysis for early damage detection. Eng Struct. 2013; 56: 273-285. doi:10.1016/j.engstruct.2013.05.022