Volume 15, Issue 5 pp. 720-736
Research Article

Robust active control of hysteretic base-isolated structures: Application to the benchmark smart base-isolated building

Francesc Pozo

Corresponding Author

Francesc Pozo

CoDAlab, Departament de Matemàtica Aplicada III, Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Universitat Politècnica de Catalunya, Comte d'Urgell, 187, 08036 Barcelona, Spain

CoDAlab, Departament de Matemàtica Aplicada III, Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Universitat Politècnica de Catalunya, Comte d'Urgell, 187, 08036 Barcelona, SpainSearch for more papers by this author
Pere Marc Montserrat

Pere Marc Montserrat

Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona, Universitat Politècnica de Catalunya, Jordi Girona Salgado, 1-3, 08034 Barcelona, Spain

Search for more papers by this author
José Rodellar

José Rodellar

CoDAlab, Departament de Matemàtica Aplicada III, Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona, Universitat Politècnica de Catalunya, Jordi Girona, 1–3, 08034 Barcelona, Spain

Search for more papers by this author
Leonardo Acho

Leonardo Acho

Centro de Investigación y Desarrollo de Tecnología Digital, Instituto Politécnico Nacional, Avenida del Parque, 1310, 22510 Tijuana, Baja California, México

Search for more papers by this author
First published: 08 July 2008
Citations: 33

Abstract

The main objective of applying robust active control to base-isolated structures is to protect them in the event of an earthquake. Taking advantage of the discontinuous control theory, a static discontinuous active bang-bang type control is developed using only the measure of the velocity at the base as a feedback. Moreover, due to that in many engineering applications, accelerometers are the only devices that provide information available for feedback; our velocity feedback controller could be easily extended by using just acceleration information through a filter. The main contributions of this paper are the development and application of (a) a static velocity feedback controller design and (b) a dynamic acceleration feedback controller design to a benchmark problem, which is recognized as a state-of-the-art model for numerical experiments of seismic control attenuation. The performance indices show that the proposed controller behaves satisfactorily and with a reasonable control effort. Copyright © 2008 John Wiley & Sons, Ltd.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.