In Situ Characterization for Understanding the Degradation in Perovskite Solar Cells
Xin Meng
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXueying Tian
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430073 China
Search for more papers by this authorCorresponding Author
Shasha Zhang
School of Materials Science and Engineering & Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan, 450001 China
Search for more papers by this authorJing Zhou
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorYiqiang Zhang
School of Materials Science and Engineering & Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan, 450001 China
Search for more papers by this authorCorresponding Author
Zonghao Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Hubei Province, Optics Valley Laboratory, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Wei Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Hubei Province, Optics Valley Laboratory, Hubei, 430074 China
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorXin Meng
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXueying Tian
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430073 China
Search for more papers by this authorCorresponding Author
Shasha Zhang
School of Materials Science and Engineering & Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan, 450001 China
Search for more papers by this authorJing Zhou
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorYiqiang Zhang
School of Materials Science and Engineering & Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan, 450001 China
Search for more papers by this authorCorresponding Author
Zonghao Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Hubei Province, Optics Valley Laboratory, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Wei Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Hubei Province, Optics Valley Laboratory, Hubei, 430074 China
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorAbstract
In the past decade, organic–inorganic hybrid perovskite solar cells (PSCs) have made unprecedented progress and recently achieved high efficiency of over 25%, comparable with commercial silicon solar cells. However, PSCs still face poor long-term stability hindering their commercial application. Because PSCs undergo severe degradation under environmental stress factors, such as moisture, heat, light, and electrical bias. Thus, exploring and evaluating the degradation pathways of perovskites and the degradation mechanisms of PSCs is quite essential. In situ diagnostic techniques can track the real-time changes of structure, morphology, and optoelectronic properties of the materials in the device during the degradation process. Herein, the progress on in situ characterization for understanding the degradation in PSCs is reviewed, including advanced characterization techniques in the aspects of electron microscopy, X-Ray, and optoelectronic spectroscopy. Besides, in situ characterization tracking the degradation process of perovskite material films from typical methylamine (MA) perovskite to formamidinium (FA)–cesium (Cs) mixed-cation perovskite and PSCs dependent on external factors is also discussed. This overview can provide a further understanding of the stability of PSCs and solve the problems on their road to commercialization. Finally, the future perspectives of in situ characterization for understanding the degradation of PSCs are provided at the end of this review.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1U. Krishnan, M. Kaur, M. Kumar, A. Kumar, J. Photonics Energy 2019, 9, 02001.
- 2Y. Zhao, H. Tan, H. Yuan, Z. Yang, J. Z. Fan, J. Kim, O. Voznyy, X. Gong, L. N. Quan, C. S. Tan, J. Hofkens, D. Yu, Q. Zhao, E. H. Sargent, Nat. Commun. 2018, 9, 1607.
- 3H. S. Kim, J. Y. Seo, N. G. Park, ChemSusChem 2016, 9, 2528.
- 4A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 5J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, Nanoscale 2011, 3, 4088.
- 6H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Sci. Rep. 2012, 2, 591.
- 7H. Hu, Z. Ren, P. W. K. Fong, M. Qin, D. Liu, D. Lei, X. Lu, G. Li, Adv. Funct. Mater. 2019, 29, 1900092.
- 8J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim, Nature 2021, 592, 381.
- 9D. Ma, J. Phys. Conf. Ser. 2021, 1865, 022078.
- 10G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 2015, 3, 8970.
- 11B. Salhi, Y. S. Wudil, M. K. Hossain, A. Al-Sulaiman, Renewable Sustainable Energy Rev. 2018, 90, 210.
- 12Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2015, 28, 284.
- 13C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, M. Scheffler, Sci. Adv. 2019, 5, 0693.
- 14L. T. Schelhas, Z. Li, J. A. Christians, A. Goyal, P. Kairys, S. P. Harvey, D. H. Kim, K. H. Stone, J. M. Luther, K. Zhu, V. Stevanovic, J. J. Berry, Energy Environ. Sci. 2019, 12, 1341.
- 15W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 2014, 104, 063903.
- 16S. P. Dunfield, L. Bliss, F. Zhang, J. M. Luther, K. Zhu, M. F. A. M. Hest, M. O. Reese, J. J. Berry, Adv. Energy Mater. 2020, 10, 1904054.
- 17N. Arora, M. I. Dar, M. Abdi-Jalebi, F. Giordano, N. Pellet, G. Jacopin, R. H. Friend, S. M. Zakeeruddin, M. Gratzel, Nano Lett. 2016, 16, 7155.
- 18Z. Li, C. Xiao, Y. Yang, S. P. Harvey, D. H. Kim, J. A. Christians, M. Yang, P. Schulz, S. U. Nanayakkara, C.-S. Jiang, J. M. Luther, J. J. Berry, M. C. Beard, M. M. Al-Jassim, K. Zhu, Energy Environ. Sci. 2017, 10, 1234.
- 19J. W. Lee, N. G. Park, Adv. Energy Mater. 2019, 10, 1903249.
- 20O. Dyck, M. Ziatdinov, D. B. Lingerfelt, R. R. Unocic, B. M. Hudak, A. R. Lupini, S. Jesse, S. V. Kalinin, Nat. Rev. Mater. 2019, 4, 497.
- 21M. Kodur, R. E. Kumar, Y. Luo, D. N. Cakan, X. Li, M. Stuckelberger, D. P. Fenning, Adv. Energy Mater. 2020, 10, 1903170.
- 22M.-C. Kim, N. Ahn, E. Lim, Y. U. Jin, Peter V. Pikhitsa, J. Heo, S. K. Kim, H. S. Jung, M. Choi, J. Mater. Chem. A 2019, 7, 12075.
- 23G. Abdelmageed, C. Mackeen, K. Hellier, L. Jewell, L. Seymour, M. Tingwald, F. Bridges, J. Z. Zhang, S. Carter, Sol. Energy Mater Sol. Cells 2018, 174, 566.
- 24C. Das, M. Wussler, T. Hellmann, T. Mayer, W. Jaegermann, Phys Chem Chem Phys 2018, 20, 17180.
- 25M. L. Petrus, Y. Hu, D. Moia, P. Calado, A. M. Leguy, P. R. Barnes, P. Docampo, ChemSusChem 2016, 9, 2699.
- 26L. S. Dubrovinsky, S. K. Saxena, F. Tutti, S. Rekhi, T. LeBehan, Phys. Rev. Lett. 2000, 84, 1720.
- 27Y. Li, W. Zhou, Y. Li, W. Huang, Z. Zhang, G. Chen, H. Wang, G. H. Wu, N. Rolston, R. Vila, W. Chiu, Y. Cui, Joule 2019, 3, 2854.
- 28X. Deng, X. Wen, J. Zheng, T. Young, C. F. J. Lau, J. Kim, M. Green, S. Huang, A. Ho-Baillie, Nano Energy 2018, 46, 356.
- 29R. S. Sanchez, E. Mas-Marza, Sol. Energy Mater. Sol. Cells 2016, 158, 189.
- 30H. Tsai, R. Asadpour, J. C. Blancon, C. C. Stoumpos, O. Durand, J. W. Strzalka, B. Chen, R. Verduzco, P. M. Ajayan, S. Tretiak, J. Even, M. A. Alam, M. G. Kanatzidis, W. Nie, A. D. Mohite, Science 2018, 360, 67.
- 31M.-C. Kim, N. Ahn, D. Cheng, M. Xu, S.-Y. Ham, X. Pan, S. J. Kim, Y. Luo, D. P. Fenning, D. H. S. Tan, M. Zhang, G. Zhu, K. Jeong, M. Choi, Y. S. Meng, ACS Energy Lett. 2021, 6, 3530.
- 32J. Chun-Ren Ke, A. S. Walton, D. J. Lewis, A. Tedstone, P. O’Brien, A. G. Thomas, W. R. Flavell, Chem. Commun. 2017, 53, 5231.
- 33M. I. Asghar, J. Zhang, H. Wang, P. D. Lund, Renewable Sustainable Energy Rev. 2017, 77, 131.
- 34Q. Jeangros, M. Duchamp, J. Werner, M. Kruth, R. E. Dunin-Borkowski, B. Niesen, C. Ballif, A. Hessler-Wyser, Nano Lett. 2016, 16, 7013.
- 35K. Song, L. Liu, D. Zhang, M. P. Hautzinger, S. Jin, Y. Han, Adv. Energy Mater. 2020, 10, 1904006.
- 36H. Sun, G. W. P. Adhyaksa, E. C. Garnett, Adv. Energy Mater. 2020, 10, 2000364.
- 37G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, C. Ducati, Nat. Energy 2016, 1, 15012.
- 38B. Yang, O. Dyck, W. Ming, M. H. Du, S. Das, C. M. Rouleau, G. Duscher, D. B. Geohegan, K. Xiao, ACS Appl. Mater. Interfaces 2016, 8, 32333.
- 39J. A. Aguiar, S. Wozny, T. G. Holesinger, T. Aoki, M. K. Patel, M. Yang, J. J. Berry, M. Al-Jassim, W. Zhou, K. Zhu, Energy Environ. Sci. 2016, 9, 2372.
- 40Z. Fan, H. Xiao, Y. Wang, Z. Zhao, Z. Lin, H.-C. Cheng, S.-J. Lee, G. Wang, Z. Feng, W. A. Goddard, Y. Huang, X. Duan, Joule 2017, 1, 548.
- 41T. W. Kim, N. Shibayama, L. Cojocaru, S. Uchida, T. Kondo, H. Segawa, Adv. Funct. Mater. 2018, 28, 1804039.
- 42D. Li, S. A. Bretschneider, V. W. Bergmann, I. M. Hermes, J. Mars, A. Klasen, H. Lu, W. Tremel, M. Mezger, H.-J. Butt, S. A. L. Weber, R. Berger, J. Phys. Chem. C 2016, 120, 6363.
- 43B.-A. Chen, J.-T. Lin, N.-T. Suen, C.-W. Tsao, T.-C. Chu, Y.-Y. Hsu, T.-S. Chan, Y.-T. Chan, J.-S. Yang, C.-W. Chiu, H. M. Chen, ACS Energy Lett. 2017, 2, 342.
- 44Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, Y.-B. Cheng, J. Mater. Chem. A 2015, 3, 8139.
- 45R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, Z. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. Yuan, Y. Huang, Y. Yang, Joule 2019, 3, 1464.
- 46Y.-H. Seo, J. H. Kim, D.-H. Kim, H.-S. Chung, S.-I. Na, Nano Energy 2020, 77.
- 47H. J. Jung, D. Kim, S. Kim, J. Park, V. P. Dravid, B. Shin, Adv. Mater. 2018, 30, 1802769.
- 48H. Yuan, E. Debroye, K. Janssen, H. Naiki, C. Steuwe, G. Lu, M. Moris, E. Orgiu, I. H. Uji, F. De Schryver, P. Samori, J. Hofkens, M. Roeffaers, J. Phys. Chem. Lett. 2016, 7, 561.
- 49J. M. Howard, R. Lahoti, M. S. Leite, Adv. Energy Mater. 2020, 10, 1903161.
- 50F. U. Kosasih, C. Ducati, Nano Energy 2018, 47, 243.
- 51K. H. Stone, A. Gold-Parker, V. L. Pool, E. L. Unger, A. R. Bowring, M. D. McGehee, M. F. Toney, C. J. Tassone, Nat. Commun. 2018, 9, 3458.
- 52N. K. Kim, Y. H. Min, S. Noh, E. Cho, G. Jeong, M. Joo, S. W. Ahn, J. S. Lee, S. Kim, K. Ihm, H. Ahn, Y. Kang, H. S. Lee, D. Kim, Sci. Rep. 2017, 7, 4645.
- 53K. W. Tan, D. T. Moore, M. Saliba, H. Sai, L. A. Estroff, T. Hanrath, H. J. Snaith, U. Wiesner, ACS Nano 2014, 8, 4730.
- 54K. Meng, X. Wang, Q. Xu, Z. Li, Z. Liu, L. Wu, Y. Hu, N. Liu, G. Chen, Adv. Funct. Mater. 2019, 29, 1902319.
- 55M. Qin, K. Tse, T. K. Lau, Y. Li, C. J. Su, G. Yang, J. Chen, J. Zhu, U. S. Jeng, G. Li, H. Chen, X. Lu, Adv. Mater. 2019, 31, 1901284.
- 56W. Tan, A. R. Bowring, A. C. Meng, M. D. McGehee, P. C. McIntyre, ACS Appl. Mater. Interfaces 2018, 10, 5485.
- 57J. Schlipf, L. Biessmann, L. Oesinghaus, E. Berger, E. Metwalli, J. A. Lercher, L. Porcar, P. Muller-Buschbaum, J. Phys. Chem. Lett. 2018, 9, 2015.
- 58K. M. Fransishyn, S. Kundu, T. L. Kelly, ACS Energy Letters 2018, 3, 2127.
- 59F. Valipour, E. Yazdi, N. Torabi, B. F. Mirjalili, A. Behjat, J. Phys. D 2020, 53, 285501.
- 60Y. Hu, M. F. Aygüler, M. L. Petrus, T. Bein, P. Docampo, ACS Energy Lett. 2017, 2, 2212.
- 61Q. Lu, Z. Yang, X. Meng, Y. Yue, M. A. Ahmad, W. Zhang, S. Zhang, Y. Zhang, Z. Liu, W. Chen, Adv. Funct. Mater. 2021, 31, 2100151.
- 62X. Tang, M. Brandl, B. May, I. Levchuk, Y. Hou, M. Richter, H. Chen, S. Chen, S. Kahmann, A. Osvet, F. Maier, H.-P. Steinrück, R. Hock, G. J. Matt, C. J. Brabec, J. Mater. Chem. A 2016, 4, 15896.
- 63A. Senocrate, T. Acartürk, G. Y. Kim, R. Merkle, U. Starke, M. Grätzel, J. Maier, J. Mater. Chem. A 2018, 6, 10847.
- 64J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, N.-G. Park, Adv. Energy Mater. 2015, 5, 1501310.
- 65G. Niu, W. Li, J. Li, X. Liang, L. Wang, RSC Adv. 2017, 7, 17473.
- 66T. Singh, T. Miyasaka, Adv. Energy Mater. 2018, 8, 1700677.
- 67C. M. Sutter-Fella, Q. P. Ngo, N. Cefarin, K. L. Gardner, N. Tamura, C. V. Stan, W. S. Drisdell, A. Javey, F. M. Toma, I. D. Sharp, Nano Lett 2018, 18, 3473.
- 68U. B. Cappel, S. Svanstrom, V. Lanzilotto, F. O. L. Johansson, K. Aitola, B. Philippe, E. Giangrisostomi, R. Ovsyannikov, T. Leitner, A. Fohlisch, S. Svensson, N. Martensson, G. Boschloo, A. Lindblad, H. Rensmo, ACS Appl. Mater. Interfaces 2017, 9, 34970.
- 69T. Kirchartz, J. A. Márquez, M. Stolterfoht, T. Unold, Adv. Energy Mater. 2020, 10, 1904134.
- 70F. Babbe, C. M. Sutter-Fella, Adv. Energy Mater. 2020, 10, 1903587.
- 71Z. Song, A. Abate, S. C. Watthage, G. K. Liyanage, A. B. Phillips, U. Steiner, M. Graetzel, M. J. Heben, Adv. Energy Mater. 2016, 6, 1600846.
- 72J. Y. Ma, J. Ding, H. J. Yan, D. Wang, J. S. Hu, ACS Appl. Mater. Interfaces 2019, 11, 21627.
- 73C. Li, A. Guerrero, S. Huettner, J. Bisquert, Nat. Commun. 2018, 9, 5113.
- 74M. Hu, C. Bi, Y. Yuan, Y. Bai, J. Huang, Adv. Sci. 2016, 3, 1500301.
- 75E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, M. D. McGehee, Chem. Sci. 2015, 6, 613.
- 76D. Marongiu, X. Chang, V. Sarritzu, N. Sestu, R. Pau, A. Geddo Lehmann, A. Mattoni, F. Quochi, M. Saba, A. Mura, G. Bongiovanni, ACS Energy Lett. 2017, 2, 769.
- 77K. Ma, H. R. Atapattu, Q. Zhao, Y. Gao, B. P. Finkenauer, K. Wang, K. Chen, S. M. Park, A. H. Coffey, C. Zhu, L. Huang, K. R. Graham, J. Mei, L. Dou, Adv. Mater. 2021, 33, 2100791.
- 78J. Liang, C. Chen, X. Hu, Z. Chen, X. Zheng, J. Li, H. Wang, F. Ye, M. Xiao, Z. Lu, Y. Xu, S. Zhang, R. Yu, C. Tao, G. Fang, ACS Appl. Mater. Interfaces 2020, 12, 48458.
- 79L. Wang, G. Wang, Z. Yan, J. Qiu, C. Jia, W. Zhang, C. Zhen, C. Xu, K. Tai, X. Jiang, S. Yang, Sol. RRL 2020, 4, 2000098.
- 80J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf, W. Weigand, S. Manzoor, M. van Hest, J. J. Berry, J. M. Luther, Z. C. Holman, M. D. McGehee, Science 2020, 367, 1097.
- 81J. Cao, S. X. Tao, P. A. Bobbert, C. P. Wong, N. Zhao, Adv. Mater. 2018, 30, 1707350.
- 82E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono, Y. Qi, Energy Environ. Sci. 2016, 9, 3406.
- 83E. J. Juarez-Perez, L. K. Ono, Y. Qi, J. Mater. Chem. A 2019, 7, 16912.
- 84E. J. Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. B. Qi, J. Mater. Chem. A 2018, 6, 9604.
- 85Z. Song, C. Wang, A. B. Phillips, C. R. Grice, D. Zhao, Y. Yu, C. Chen, C. Li, X. Yin, R. J. Ellingson, M. J. Heben, Y. Yan, Sustainable Energy Fuels 2018, 2, 2460.
- 86R. F. Egerton, P. Li, M. Malac, Micron 2004, 35, 399.
- 87R. F. Egerton, Micron 2019, 119, 72.
- 88O. Hentz, Z. Zhao, S. Gradecak, Nano Lett. 2016, 16, 1485.
- 89J. Ran, O. Dyck, X. Wang, B. Yang, D. B. Geohegan, K. Xiao, Adv. Energy Mater. 2020, 10, 1903191.
- 90D. Zhang, Y. Zhu, L. Liu, X. Ying, C. E. Hsiung, R. Sougrat, K. Li, Y. Han, Science 2018, 359, 675.
- 91M. Adrian, J. Dubochet, J. Lepault, A. W. McDowall, Nature 1984, 308, 32.
- 92X. Wang, Y. Li, Y. S. Meng, Joule 2018, 2, 2225.
- 93A. Rigort, J. M. Plitzko, Arch. Biochem. Biophys. 2015, 581, 122.
- 94R. L. Z. Hoye, P. Schulz, L. T. Schelhas, A. M. Holder, K. H. Stone, J. D. Perkins, D. Vigil-Fowler, S. Siol, D. O. Scanlon, A. Zakutayev, A. Walsh, I. C. Smith, B. C. Melot, R. C. Kurchin, Y. Wang, J. Shi, F. C. Marques, J. J. Berry, W. Tumas, S. Lany, V. Stevanović, M. F. Toney, T. Buonassisi, Chem. Mater. 2017, 29, 1964.
- 95A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, P. R. F. Barnes, Chem. Mater. 2015, 27, 3397.
- 96J. D. McGettrick, K. Hooper, A. Pockett, J. Baker, J. Troughton, M. Carnie, T. Watson, Mater. Lett. 2019, 251, 98.
- 97Z. Yang, Z. Liu, V. Ahmadi, W. Chen, Y. B. Qi, Sol. RRL 2021, 6, 2100458.