Green-Solvent-Processed 17% Efficient Polymer Solar Cell Achieved Synergistically by Aligning Energy Levels and Improving Morphology with the Quaternary Strategy
Honglin Tan
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorWeichao Zhang
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorPengyu Zhang
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorXiaoyu Lv
Inner Mongolia Key Laboratory of Functional Materials Physics and Chemistry, College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022 China
Search for more papers by this authorAlata Hexig
Inner Mongolia Key Laboratory of Functional Materials Physics and Chemistry, College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022 China
Search for more papers by this authorJianhua Huang
College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Beigang Li
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorCorresponding Author
Chuanlang Zhan
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorHonglin Tan
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorWeichao Zhang
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorPengyu Zhang
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorXiaoyu Lv
Inner Mongolia Key Laboratory of Functional Materials Physics and Chemistry, College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022 China
Search for more papers by this authorAlata Hexig
Inner Mongolia Key Laboratory of Functional Materials Physics and Chemistry, College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022 China
Search for more papers by this authorJianhua Huang
College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Beigang Li
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorCorresponding Author
Chuanlang Zhan
Inner Mongolia University Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) and Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022 China
Search for more papers by this authorAbstract
Low and unbalanced charge mobilities result in low short-circuit current density (JSC) and small fill factor (FF), which greatly limits the power conversion efficiencies (PCEs) of polymer solar cells (PSCs) processed with green solvents. Herein, a unique quaternary material system (PM6:BTP-BO-4F:BTP:PhI-Se) is reported, which uses an upshifted highest occupied molecular orbital (HOMO) acceptor guest (BTP) and a deep-HOMO, ultra-wide bandgap polymer donor guest (PhI-Se) as quaternary strategy to align energy levels and improve morphology, leading to open-circuit voltage (VOC) (from 0.812 to 0.851 V), FF (from 66.1% to 76.7%), and JSC (from 24.4 to 26.1 mA cm−2) increased simultaneously, hence obtaining PCEs of 17.0% processed with toluene. When processed with chlorobenzene (CB), 18.2% efficiency is obtained. Adding BTP and PhI-Se as the third component increases hole and electron mobilities, respectively, going from 1.32/0.63 × 10−4 cm2 V−1 s−1 for the host binary to 1.56/2.56 and 2.26/2.86 × 10−4 cm2 V−1 s−1 for the BTP and PhI-Se ternary. With both adding, the values shift to 3.69/3.20 × 10−4 cm2 V−1 s−1 for the quaternary blends. The crystalline coherence length (CCL) increases from 18.8 nm to 20.2 nm and 23.6 nm, respectively, for the two ternaries, and then 25.7 nm for the quaternary blend.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200147-sup-0001-SuppData-S1.pdf524.1 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Nat. Commun. 2019, 10, 2515.
- 2B. Fan, Z. Zeng, W. Zhong, L. Ying, D. Zhang, M. Li, F. Peng, N. Li, F. Huang, Y. Cao, ACS Energy Lett. 2019, 4, 2466.
- 3J. Gao, J. Wang, Q. An, X. Ma, Z. Hu, C. Xu, X. Zhang, F. Zhang, Sci. China Chem. 2019, 63, 83.
- 4X. Wang, Z. Du, K. Dou, H. Jiang, C. Gao, L. Han, R. Yang, Adv. Energy Mater. 2019, 9, 1802530.
- 5L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, J. Hou, Adv. Mater. 2019, 31, 1903441.
- 6Y. Lin, B. Adilbekova, Y. Firdaus, E. Yengel, H. Faber, M. Sajjad, X. Zheng, E. Yarali, A. Seitkhan, O. M. Bakr, A. El-Labban, U. Schwingenschlogl, V. Tung, I. McCulloch, F. Laquai, T. D. Anthopoulos, Adv. Mater. 2019, 31, 1902965.
- 7R. Wang, J. Yuan, R. Wang, G. Han, T. Huang, W. Huang, J. Xue, H. C. Wang, C. Zhang, C. Zhu, P. Cheng, D. Meng, Y. Yi, K. H. Wei, Y. Zou, Y. Yang, Adv. Mater. 2019, 31, 1904215.
- 8Y. Wu, Y. Zheng, H. Yang, C. Sun, Y. Dong, C. Cui, H. Yan, Y. Li, Sci China Chem 2019, 63, 265.
- 9C. Li, X. Zhang, N. Yu, X. Gu, L. Qin, Y. Wei, X. Liu, J. Zhang, Z. Wei, Z. Tang, Q. Shi, H. Huang, Adv. Funct. Mater. 2021, 32, 2108861.
- 10R. Barla, B. Lochab, A. Agrawal, A. Mishra, M. L. Keshtov, G. D. Sharma, Sol. RRL 2021, 5, 2100402.
- 11J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140.
- 12K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, H. Yan, Joule 2019, 3, 3020.
- 13G. Chai, Y. Chang, Z. Peng, Y. Jia, X. Zou, D. Yu, H. Yu, Y. Chen, P. C. Y. Chow, K. S. Wong, J. Zhang, H. Ade, L. Yang, C. Zhan, Nano Energy 2020, 76, 105087.
- 14G. Zhang, H. Ning, H. Chen, Q. Jiang, J. Jiang, P. Han, L. Dang, M. Xu, M. Shao, F. He, Q. Wu, Joule 2021, 5, 931.
- 15M. Jeong, J. Oh, Y. Cho, B. Lee, S. Jeong, S. M. Lee, S. H. Kang, C. Yang, Adv. Funct. Mater. 2021, 31, 2102371.
- 16B. Fan, F. Lin, J. Oh, H. Fu, W. Gao, Q. Fan, Z. Zhu, W. J. Li, N. Li, L. Ying, F. Huang, C. Yang, A. K. Y. Jen, Adv. Energy Mater. 2021, 11, 2101768.
- 17Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205.
- 18H. Yu, Z. Qi, J. Zhang, Z. Wang, R. Sun, Y. Chang, H. Sun, W. Zhou, J. Min, H. Ade, H. Yan, J. Mater. Chem. A 2020, 8, 23756.
- 19R. Sun, T. Wang, Z. Luo, Z. Hu, F. Huang, C. Yang, J. Min, Sol. RRL 2020, 4, 2000156.
- 20K. Li, Y. Wu, X. Li, H. Fu, C. Zhan, Sci. China Chem. 2020, 63, 490.
- 21Y. Zhang, K. Liu, J. Huang, X. Xia, J. Cao, G. Zhao, P. W. K. Fong, Y. Zhu, F. Yan, Y. Yang, X. Lu, G. Li, Nat. Commun. 2021, 12, 4815.
- 22L. Zhan, S. Li, X. Xia, Y. Li, X. Lu, L. Zuo, M. Shi, H. Chen, Adv. Mater. 2021, 33, 2007231.
- 23C. Guo, D. Li, L. Wang, B. Du, Z. X. Liu, Z. Shen, P. Wang, X. Zhang, J. Cai, S. Cheng, C. Yu, H. Wang, D. Liu, C. Z. Li, T. Wang, Adv. Energy Mater. 2021, 11, 2102000.
- 24Y. Zheng, R. Sun, M. Zhang, Z. Chen, Z. Peng, Q. Wu, X. Yuan, Y. Yu, T. Wang, Y. Wu, X. Hao, G. Lu, H. Ade, J. Min, Adv. Energy Mater. 2021, 11, 2102135.
- 25M. Zhang, L. Zhu, G. Zhou, T. Hao, C. Qiu, Z. Zhao, Q. Hu, B. W. Larson, H. Zhu, Z. Ma, Z. Tang, W. Feng, Y. Zhang, T. P. Russell, F. Liu, Nat. Commun. 2021, 12, 309.
- 26Y. Li, Y. Cai, Y. Xie, J. Song, H. Wu, Z. Tang, J. Zhang, F. Huang, Y. Sun, Energy Environ. Sci. 2021, 14, 5009.
- 27S. Park, F. T. Adhi Wibowo, N. V. Krishna, J. Ryu, H. Lee, J. H. Lee, Y. J. Yoon, J. Y. Kim, J. H. Seo, S.-H. Oh, S.-Y. Jang, S. Cho, J. Mater. Chem. A 2021, 9, 15394.
- 28C. Cao, H. Lai, H. Chen, Y. Zhu, M. Pu, N. Zheng, F. He, J. Mater. Chem. A 2021, 9, 16418.
- 29H. Yang, Y. Dong, H. Fan, Y. Wu, C. Cui, Y. Li, Sol. RRL 2021, 5, 2100013.
- 30Y. Tang, J. Yu, H. Sun, Z. Wu, C. W. Koh, X. Wu, B. Liu, J. Wang, Q. Liao, Y. Li, H. Guo, H. Y. Woo, F. Gao, X. Guo, Sol. RRL 2020, 4, 2000396.
- 31B. Qiu, S. Chen, C. Sun, J. Yuan, X. Zhang, C. Zhu, S. Qin, L. Meng, Y. Zhang, C. Yang, Y. Zou, Y. Li, Sol. RRL 2020, 4, 1900540.
- 32C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605.
- 33Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 2020, 65, 272.
- 34T. Zhang, C. An, P. Bi, Q. Lv, J. Qin, L. Hong, Y. Cui, S. Zhang, J. Hou, Adv. Energy Mater. 2021, 11, 2101705.
- 35X. Xu, L. Yu, H. Meng, L. Dai, H. Yan, R. Li, Q. Peng, Adv. Funct. Mater. 2021, 32, 2108797.
- 36X. Xiong, X. Xue, M. Zhang, T. Hao, Z. Han, Y. Sun, Y. Zhang, F. Liu, S. Pei, L. Zhu, ACS Energy Lett. 2021, 6, 3582.
- 37D. Wang, G. Zhou, Y. Li, K. Yan, L. Zhan, H. Zhu, X. Lu, H. Chen, C. Z. Li, Adv. Funct. Mater. 2021, 32, 2107827.
- 38L. Liu, S. Chen, Y. Qu, X. Gao, L. Han, Z. Lin, L. Yang, W. Wang, N. Zheng, Y. Liang, Y. Tan, H. Xia, F. He, Adv. Mater. 2021, 33, 2101279.
- 39L. Zeng, R. Ma, Q. Zhang, T. Liu, Y. Xiao, K. Zhang, S. Cui, W. Zhu, X. Lu, H. Yan, Y. Liu, Mater. Chem. Front. 2021, 5, 1906.
- 40Z. Wen, T. Wang, Z. Chen, T. Jiang, L. Feng, X. Feng, C. Qin, X. Hao, Chin. Chem. Lett. 2021, 32, 529.
- 41J. Lv, H. Tang, J. Huang, C. Yan, K. Liu, Q. Yang, D. Hu, R. Singh, J. Lee, S. Lu, G. Li, Z. Kan, Energy Environ. Sci. 2021, 14, 3044.
- 42B. Liu, H. Sun, J.-W. Lee, J. Yang, J. Wang, Y. Li, B. Li, M. Xu, Q. Liao, W. Zhang, D. Han, L. Niu, H. Meng, B. J. Kim, X. Guo, Energy Environ. Sci. 2021, 14, 4499.
- 43D. Wang, H. Liu, Y. Li, G. Zhou, L. Zhan, H. Zhu, X. Lu, H. Chen, C.-Z. Li, Joule 2021, 5, 945.
- 44H. Chen, R. Zhang, X. Chen, G. Zeng, L. Kobera, S. Abbrent, B. Zhang, W. Chen, G. Xu, J. Oh, S.-H. Kang, S. Chen, C. Yang, J. Brus, J. Hou, F. Gao, Y. Li, Y. Li, Nat. Energy 2021, 6, 1045.
- 45X. Xu, L. Yu, H. Yan, R. Li, Q. Peng, Energy Environ. Sci., 2020, 13, 4381.
- 46S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Joule 2020, 4, 2004.
- 47H. Chen, H. Lai, Z. Chen, Y. Zhu, H. Wang, L. Han, Y. Zhang, F. He, Angew. Chem. Int. Ed. 2021, 60, 3238.
- 48H. Jung, G. Yu, J. Kim, H. Bae, M. Kim, K. Kim, B. Kim, Y. Lee, Sol. RRL 2021, 5, 2100513.
- 49K. Li, Y. Wu, Y. Tang, M. A. Pan, W. Ma, H. Fu, C. Zhan, J. Yao, Adv. Energy Mater. 2019, 9, 1901728.
- 50Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, Y. Li, Nano Energy 2020, 78, 105272.
- 51X. Liao, Q. Xie, Y. Guo, Q. He, Z. Chen, N. Yu, P. Zhu, Y. Cui, Z. Ma, X. Xu, H. Zhu, Y. Chen, Energy Environ. Sci. 2022, 15, 384.
- 52Y. Zeng, D. Li, H. Wu, Z. Chen, S. Leng, T. Hao, S. Xiong, Q. Xue, Z. Ma, H. Zhu, Q. Bao, Adv. Funct. Mater. 2021, 32, 2110743.
- 53Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 2021, 33, 2102420.
- 54Y. Cai, Y. Li, R. Wang, H. Wu, Z. Chen, J. Zhang, Z. Ma, X. Hao, Y. Zhao, C. Zhang, F. Huang, Y. Sun, Adv. Mater. 2021, 33, 2101733.
- 55Y. Chang, X. Zhang, Y. Tang, M. Gupta, D. Su, J. Liang, D. Yan, K. Li, X. Guo, W. Ma, H. Yan, C. Zhan, Nano Energy 2019, 64, 103934.
- 56X. Ma, M. Luo, W. Gao, J. Yuan, Q. An, M. Zhang, Z. Hu, J. Gao, J. Wang, Y. Zou, C. Yang, F. Zhang, J. Mater. Chem. A 2019, 7, 7843.
- 57D. Zhao, P. C. Jia, L. Li, Y. Tang, Q. H. Cui, C. L. Zhan, Y. B. Hou, Y. F. Hu, Z. D. Lou, F. Teng, RSC Adv. 2020, 10, 43508.
- 58K. N. Zhang, X. Y. Du, Z. H. Chen, T. Wang, Z. Q. Yang, H. Yin, Y. Yang, W. Qin, X. T. Hao, Adv. Energy Mater. 2021, 12, 2103371.
- 59W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, J. Yao, Sci. China Chem. 2018, 61, 1609.
- 60Z. Bi, Q. Zhu, X. Xu, H. B. Naveed, X. Sui, J. Xin, L. Zhang, T. Li, K. Zhou, X. Liu, X. Zhan, W. Ma, Adv. Funct. Mater. 2019, 29, 1806804.
- 61L. Z. Liu, H. Chen, W. Chen, F. He, J. Mater. Chem. A 2019, 7, 7815.
- 62D. Yan, J. Xin, W. Li, S. Liu, H. Wu, W. Ma, J. Yao, C. Zhan, ACS Appl. Mater. Interfaces 2019, 11, 766.
- 63F. Shen, D. Yan, W. Li, H. Meng, J. Huang, X. Li, J. Xu, C. Zhan, Mater. Chem. Front. 2019, 3, 301.
- 64L. Arunagiri, Z. Peng, X. Zou, H. Yu, G. Zhang, Z. Wang, J. Y. Lin Lai, J. Zhang, Y. Zheng, C. Cui, F. Huang, Y. Zou, K. S. Wong, P. C. Y. Chow, H. Ade, H. Yan, Joule 2020, 4, 1790.
- 65W. Zhang, J. Huang, J. Xu, M. Han, D. Su, N. Wu, C. Zhang, A. Xu, C. Zhan, Adv. Energy Mater. 2020, 10, 2001436.
- 66Z. Luo, R. Sun, C. Zhong, T. Liu, G. Zhang, Y. Zou, X. Jiao, J. Min, C. Yang, Sci. China Chem. 2020, 63, 361.
- 67C. Liao, M. Zhang, X. Xu, F. Liu, Y. Li, Q. Peng, J. Mater. Chem. A 2019, 7, 716.
- 68H. Xia, Y. Zhang, W. Deng, K. Liu, X. Xia, C. J. Su, U. S. Jeng, M. Zhang, J. Huang, J. Huang, C. Yan, W. Y. Wong, X. Lu, W. Zhu, G. Li, Adv. Mater. 2022, 34, 2107659.
- 69R. Ma, T. Yang, Y. Xiao, T. Liu, G. Zhang, Z. Luo, G. Li, X. Lu, H. Yan, B. Tang, Energy Environ. Mater 2021, 14, 1801793.
- 70Y. Dong, R. Yu, B. Zhao, Y. Gong, H. Jia, Z. Ma, H. Gao, Z. Tan, ACS Appl. Mater. Interfaces 2022, 14, 1280.
- 71T. Gokulnath, J. Choi, H.-Y. Park, K. Sung, Y. Do, H. Park, J. Kim, S. S. Reddy, J. Kim, M. Song, J. Yoon, S.-H. Jin, Nano Energy 2021, 89, 106323.
- 72Q. An, J. Wang, W. Gao, X. Ma, Z. Hu, J. Gao, C. Xu, M. Hao, X. Zhang, C. Yang, F. Zhang, Sci. Bull. 2020, 65, 538.
- 73X. Song, P. Sun, D. Sun, Y. Xu, Y. Liu, W. Zhu, Nano Energy 2022, 91, 106678.
- 74J. Jing, S. Dong, K. Zhang, B. Xie, J. Zhang, Y. Song, F. Huang, Nano Energy 2022, 93, 106814.
- 75M. Gao, W. Wang, J. Hou, L. Ye, Aggregate 2021, 2, 46.