Scalable Growth of Stable Wide-Bandgap Perovskite towards Large-Scale Tandem Photovoltaics
Congcong Tian
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216 P. R. China
Search for more papers by this authorXiaofeng Gao
International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorJing Li
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorJunye Pan
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorGuomu Yu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorBo Huang
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216 P. R. China
Search for more papers by this authorYongtao Wen
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorHao Zhu
International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Tongle Bu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorYi-Bing Cheng
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216 P. R. China
Search for more papers by this authorCorresponding Author
Fuzhi Huang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216 P. R. China
Search for more papers by this authorCongcong Tian
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216 P. R. China
Search for more papers by this authorXiaofeng Gao
International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorJing Li
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorJunye Pan
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorGuomu Yu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorBo Huang
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216 P. R. China
Search for more papers by this authorYongtao Wen
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorHao Zhu
International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Tongle Bu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorYi-Bing Cheng
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216 P. R. China
Search for more papers by this authorCorresponding Author
Fuzhi Huang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216 P. R. China
Search for more papers by this authorAbstract
Upscaling and stabilizing efficient wide-bandgap perovskite solar cells (PSCs) are critical for the commercialization of tandem photovoltaics. Herein, solvent engineering is applied for scalable deposition of wide-bandgap (≈1.72 eV) perovskite by the introduction of N-methyl-2-pyrrolidone (NMP) additives, which enables compact and phase-stable FA0.83Cs0.17Pb(I0.7Br0.3)3 perovskite even without the use of antisolvent. By further passivation with a 2-thiophenemethylammonium bromide (2-ThMABr)-based quasi-2D perovskite (n = 2) on the surface of 3D perovskite, a champion power conversion efficiency (PCE) of 19.46% with a higher open-circuit voltage of 1.219 V for a small-sized wide-bandgap PSC is achieved. It also exhibits excellent long-term stability, maintaining 93% of its initial PCE after 2000 h storage in the air without encapsulation. In addition, this wide-bandgap perovskite is also easy to be upscaled via a blade-coating strategy, which demonstrates high PCEs of 16.07% and 13.03% with active areas of 46.5 and 123.0 cm2, respectively. Furthermore, the application of this wide-bandgap perovskite for four-terminal (4-T) perovskite/silicon (Si) tandem solar cells also demonstrates high PCEs of 23.85% and 19.51% with active areas of 0.16 and 1.0 cm2. The work demonstrates a great potential toward large-area efficient and stable wide-bandgap PSCs and perovskite/Si tandem cells.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200134-sup-0001-SuppData-S1.pdf948.2 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584.
- 2F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489.
- 3D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 2016, 351, 151.
- 4X. Dai, Y. Deng, C. H. Van Brackle, S. Chen, P. N. Rudd, X. Xiao, Y. Lin, B. Chen, J. Huang, Adv. Energy Mater. 2020, 10, 1903108.
- 5 NREL, Solar Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed January 2022).
- 6Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu, X. Xu, Q. Chang, S. Yang, F. Meng, Z. Liu, N. Yuan, J. Ding, S. Liu, D. Yang, Adv. Funct. Mater. 2019, 30, 1908298.
- 7A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Marquez, A. B. Morales Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Science 2020, 370, 1300.
- 8R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2019, 4, 864.
- 9G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, A. Palmstrom, D. J. Slotcavage, R. A. Belisle, J. B. Patel, E. S. Parrott, R. J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H. G. Boyen, S. Bent, F. Giustino, L. M. Herz, M. B. Johnston, M. D. McGehee, H. J. Snaith, Science 2016, 354, 861.
- 10D. H. Kim, C. P. Muzzillo, J. Tong, A. F. Palmstrom, B. W. Larson, C. Choi, S. P. Harvey, S. Glynn, J. B. Whitaker, F. Zhang, Z. Li, H. Lu, M. F. A. M. van Hest, J. J. Berry, L. M. Mansfield, Y. Huang, Y. Yan, K. Zhu, Joule 2019, 3, 1734.
- 11A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Bertram, J. A. Márquez, E. Köhnen, E. Kasparavičius, S. Levcenco, L. Gil-Escrig, C. J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C. A. Kaufmann, L. Korte, G. Niaura, V. Getautis, S. Albrecht, Energy Environ. Sci. 2019, 12, 3356.
- 12L. C. Hirst, N. J. Ekins-Daukes, Progr. Photovolt. 2011, 19, 286.
- 13R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. Xiao, B. Chen, S. M. Park, G. Chen, H. R. Atapattu, K. R. Graham, J. Xu, J. Zhu, L. Li, C. Zhang, E. H. Sargent, H. Tan, Nature 2022, 603, 73.
- 14S. Rühle, Phys. Status Solidi A 2017, 214, 1600955.
- 15E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, M. D. McGehee, Chem. Sci. 2015, 6, 613.
- 16K. A. Bush, K. Frohna, R. Prasanna, R. E. Beal, T. Leijtens, S. A. Swifter, M. D. McGehee, ACS Energy Lett. 2018, 3, 428.
- 17C. Chen, Z. Song, C. Xiao, R. A. Awni, C. Yao, N. Shrestha, C. Li, S. S. Bista, Y. Zhang, L. Chen, R. J. Ellingson, C.-S. Jiang, M. Al-Jassim, G. Fang, Y. Yan, ACS Energy Lett. 2020, 5, 2560.
- 18M. Wang, B. Li, P. Siffalovic, L.-C. Chen, G. Cao, J. Tian, J. Mater. Chem. A 2018, 6, 15386.
- 19D.-K. Lee, K.-S. Lim, J.-W. Lee, N.-G. Park, J. Mater. Chem. A 2021, 9, 3018.
- 20H. Li, T. Bu, J. Li, Z. Lin, J. Pan, Q. Li, X. L. Zhang, Z. Ku, Y. B. Cheng, F. Huang, ACS Appl. Mater. Interfaces 2021, 13, 18724.
- 21M. Du, X. Zhu, L. Wang, H. Wang, J. Feng, X. Jiang, Y. Cao, Y. Sun, L. Duan, Y. Jiao, K. Wang, X. Ren, Z. Yan, S. Pang, S. F. Liu, Adv. Mater. 2020, 32, e2004979.
- 22C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, Nano Energy 2018, 46, 185.
- 23A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, H. Han, Science 2014, 345, 295.
- 24S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan, K. Xiao, ACS Photonics 2015, 2, 680.
- 25S.-G. Li, K.-J. Jiang, M.-J. Su, X.-P. Cui, J.-H. Huang, Q.-Q. Zhang, X.-Q. Zhou, L.-M. Yang, Y.-L. Song, J. Mater. Chem. A 2015, 3, 9092.
- 26Y. Zhou, F. Wang, Y. Cao, J. P. Wang, H. H. Fang, M. A. Loi, N. Zhao, C. P. Wong, Adv. Energy Mater. 2017, 7, 1701048.
- 27C. Chen, J. Liang, J. Zhang, X. Liu, X. Yin, H. Cui, H. Wang, C. Wang, Z. Li, J. Gong, Q. Lin, W. Ke, C. Tao, B. Da, Z. Ding, X. Xiao, G. Fang, Nano Energy 2021, 90, 106608.
- 28T. L. Bu, J. Li, Q. D. Lin, D. P. McMeekin, J. S. Sun, M. C. Wang, W. J. Chen, X. M. Wen, W. X. Mao, C. R. McNeill, W. C. Huang, X. L. Zhang, J. Zhong, Y. B. Cheng, U. Bach, F. Z. Huang, Nano Energy 2020, 75, 104917.
- 29S. Gharibzadeh, B. Abdollahi Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J. A. Schwenzer, P. Brenner, R. Schmager, A. A. Haghighirad, L. Weinhardt, U. Lemmer, B. S. Richards, I. A. Howard, U. W. Paetzold, Adv. Energy Mater. 2019, 9, 1803699.
- 30M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, L. Spiccia, Angew. Chem. Int. Ed. 2014, 53, 9898.
- 31T. Bu, J. Li, H. Li, C. Tian, J. Su, G. Tong, L. K. Ono, C. Wang, Z. Lin, N. Chai, X. L. Zhang, J. Chang, J. Lu, J. Zhong, W. Huang, Y. Qi, Y. B. Cheng, F. Huang, Science 2021, 372, 1327.
- 32Y. Zhou, Y.-H. Jia, H.-H. Fang, M. A. Loi, F.-Y. Xie, L. Gong, M.-C. Qin, X.-H. Lu, C.-P. Wong, N. Zhao, Adv. Funct. Mater. 2018, 28, 1803130.
- 33A. J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S. P. Senanayak, P. M. Pearce, E. Mosconi, A. J. Pearson, Y. Wu, A. R. Srimath Kandada, T. Leijtens, F. De Angelis, S. E. Dutton, A. Petrozza, R. H. Friend, ACS Energy Lett. 2017, 2, 1416.
- 34J. Xia, C. Liang, S. Mei, H. Gu, B. He, Z. Zhang, T. Liu, K. Wang, S. Wang, S. Chen, Y. Cai, G. Xing, J. Mater. Chem. A 2021, 9, 2919.
- 35Q. He, M. Worku, L. Xu, C. Zhou, H. Lin, A. J. Robb, K. Hanson, Y. Xin, B. Ma, ACS Appl. Mater. Interfaces 2020, 12, 1159.
- 36W. Q. Wu, Z. Yang, P. N. Rudd, Y. Shao, X. Dai, H. Wei, J. Zhao, Y. Fang, Q. Wang, Y. Liu, Y. Deng, X. Xiao, Y. Feng, J. Huang, Sci. Adv. 2019, 5, eaav8925.
- 37A. Z. Chen, M. Shiu, J. H. Ma, M. R. Alpert, D. Zhang, B. J. Foley, D. M. Smilgies, S. H. Lee, J. J. Choi, Nat. Commun. 2018, 9, 1336.