Coevaporation of Doped Inorganic Carrier-Selective Layers for High-Performance Inverted Planar Perovskite Solar Cells
Jiexuan Jiang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorAndraž Mavrič
Materials Research Laboratory, University of Nova Gorica, SI-5000 Nova Gorica, Slovenia
Search for more papers by this authorNadiia Pastukhova
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Materials Research Laboratory, University of Nova Gorica, SI-5000 Nova Gorica, Slovenia
Search for more papers by this authorMatjaz Valant
Materials Research Laboratory, University of Nova Gorica, SI-5000 Nova Gorica, Slovenia
Search for more papers by this authorQiugui Zeng
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorZeyu Fan
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorBeibei Zhang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorCorresponding Author
Yanbo Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorJiexuan Jiang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorAndraž Mavrič
Materials Research Laboratory, University of Nova Gorica, SI-5000 Nova Gorica, Slovenia
Search for more papers by this authorNadiia Pastukhova
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Materials Research Laboratory, University of Nova Gorica, SI-5000 Nova Gorica, Slovenia
Search for more papers by this authorMatjaz Valant
Materials Research Laboratory, University of Nova Gorica, SI-5000 Nova Gorica, Slovenia
Search for more papers by this authorQiugui Zeng
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorZeyu Fan
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorBeibei Zhang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorCorresponding Author
Yanbo Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorAbstract
Inorganic carrier-selective layers (CSLs), whose conductivity can be effectively tuned by doping, offer low-cost and stable alternatives for their organic counterparts in perovskite solar cells (PSCs). Herein, a dual-source electron-beam co-evaporation method for the controlled deposition of copper-doped nickel oxide (Cu:NiO) and tungsten-doped niobium oxide (W:Nb2O5) as hole and electron transport layers, respectively, is used. The mechanisms for the improved conductivity using dopants are investigated. Owing to the improved conductivity and optimized band alignment of the doped CSLs, the all-inorganic-CSLs-based PSCs achieve a maximum power conversion efficiency (PCE) of 20.47%. Furthermore, a thin titanium buffer layer is inserted between W:Nb2O5 and the silver electrode to prevent halide ingression and improve band alignment. This leads to a further improvement of PCE to 21.32% and long-term stability (1200 h) after encapsulation. Finally, the large-scale applicability of the doped CSLs by coevaporation is demonstrated for the device with 1 cm2 area showing a PCE of over 19%. The results demonstrate the potential application of the coevaporated CSLs with controlled doping in PSCs for commercialization.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200091-sup-0001-SuppData-S1.pdf1.2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Bogachuk, S. Zouhair, K. Wojciechowski, B. Yang, V. Babu, L. Wagner, B. Xu, J. Lim, S. Mastroianni, H. Pettersson, A. Hagfeldt, A. Hinsch, Energy Environ. Sci. 2020, 13, 3880.
- 2Y. Xu, M. Wang, Y. Lei, Z. Ci, Z. Jin, Adv. Energy Mater. 2020, 10, 2002558.
- 3F. Ali, C. Roldán-Carmona, M. Sohail, M. K. Nazeeruddin, Adv. Energy Mater. 2020, 10, 2002989.
- 4J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, J. Y. Kim, Nature 2021, 592, 381.
- 5G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, S. I. Seok, Science, 2020, 370, 108.
- 6J. Xi, I. Spanopoulos, K. Bang, J. Xu, H. Dong, Y. Yang, C. D. Malliakas, J. M. Hoffman, M. G. Kanatzidis, Z. Wu, J. Am. Chem. Soc. 2020, 142, 19705
- 7X. Hu, C. Liu, Z. Zhang, X. F. Jiang, J. Garcia, C. Sheehan, L. Shui, S. Priya, G. Zhou, S. Zhang, K. Wang, Adv. Sci. 2020, 7, 2001285.
- 8S.-S. Rong, M. B. Faheem, Y.-B. Li, J. Electron. Sci. Technol. 2021, 19, 100081.
10.1016/j.jnlest.2021.100081 Google Scholar
- 9S. Seo, S. Shin, E. Kim, S. Jeong, N.-G. Park, H. Shin, ACS Energy Lett. 2021, 6, 3332.
- 10S. Rong, Y. Xiao, J. Jiang, Q. Zeng, Y. Li, J. Phys. Chem. C 2020, 124, 8992.
- 11M. B. Faheem, B. Khan, C. Feng, M. U. Farooq, F. Raziq, Y. Xiao, Y. Li, ACS Energy Lett. 2019, 5, 290.
- 12Z. Wang, Q. Wei, X. Liu, L. Liu, X. Tang, J. Guo, S. Ren, G. Xing, D. Zhao, Y. Zheng, Adv. Energy Mater. 2020, 31, 2008404.
- 13H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W. R. Tress, F. T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C. E. Avalos, B. I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, M. Grätzel, Science 2020, 370, 6512.
- 14J. Feng, Z. Yang, D. Yang, X. Ren, X. Zhu, Z. Jin, W. Zi, Q. Wei, S. Liu, Nano Energy 2017, 36, 1.
- 15N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Grätzel, Science 2017, 358, 768.
- 16J. W. Jung, C.-C. Chueh, A. K. Y. Jen, Adv. Energy Mater. 2015, 27, 7874.
- 17C. Duan, M. Zhao, C. Zhao, Y. Wang, J. Li, W. Han, Q. Hu, L. Yao, H. Jian, F. Lu, T. Jiu, Mater. Today Energy 2018, 9, 487.
- 18J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z.-G. Zhang, Y. Li, S. F. Liu, Adv. Energy Mater. 2018, 8, 1701757.
- 19J. Jiang, Z. Jin, J. Lei, Q. Wang, X. Zhang, J. Zhang, F. Gao, S. Liu, J. Mater. Chem. A 2017, 5, 9514.
- 20W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Science 2015, 350, 944.
- 21J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotechnol. 2016, 11, 75.
- 22S. Zhang, W. Chen, S. Wu, R. Chen, Y. Huang, Z. Yang, J. Li, L. Han, W. Chen, J. Mater. Chem. A 2019, 7, 18603.
- 23X. Liu, J. Jiang, F. Wang, Y. Xiao, I. D. Sharp, Y. Li, ACS Appl. Mater. Interfaces 2019, 11, 46894.
- 24X. Liu, Y. Xiao, Q. Zeng, J. Jiang, Y. Li, J. Phys. Chem. Lett. 2019, 10, 6382.
- 25A. Bashir, J. H. Lew, S. Shukla, D. Gupta, T. Baikie, S. Chakraborty, R. Patidar, A. Bruno, S. Mhaisalkar, Z. Akhter, Sol. Energy 2019, 182, 225.
- 26M. Kim, C. W. Joo, J. H. Kim, W. Choi, J. Lee, D. Lee, H. Cho, H. Lee, S. Park, N. S. Cho, H. Cho, C.-W. Lee, D. Y. Jeon, B.-H. Kwon, ACS Photonics 2018, 5, 3389.
- 27G. M. Arumugam, S. K. Karunakaran, C. Liu, C. Zhang, F. Guo, S. Wu, Y. Mai, Nano Select 2021, 2, 1081.
- 28F. Ma, Y. Zhao, J. Li, X. Zhang, H. Gu, J. You, J. Energy Chem. 2021, 52, 393.
- 29W. Chen, Y. Wu, J. Fan, A. B. Djurišić, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, Z.-B. He, Adv. Energy Mater. 2018, 8, 1703519.
- 30Y.-H. Li, X. Lu, R. Wang, Y.-Y. Ma, S. Duhm, M.-K. Fung, J. Mater. Chem. C 2017, 5, 11751.
- 31A. Esteves, L. C. Oliveira, T. C. Ramalho, M. Goncalves, A. S. Anastacio, H. W. Carvalho, Catal. Commun. 2008, 10, 330.
- 32Y. Chen, Z. Pu, Y. Liu, Y. Shen, S. Liu, D. Liu, Y. Li, J. Power Sources 2021, 515, 230601.
- 33E. Pehlivan, F. Z. Tepehan, G. G. Tepehan, Solid State Ionics 2003, 165, 105.
- 34S. Wu, R. Chen, S. Zhang, B. H. Babu, Y. Yue, H. Zhu, Z. Yang, C. Chen, W. Chen, Y. Huang, S. Fang, T. Liu, L. Han, W. Chen, Nat. Commun. 2019, 10, 1161.
- 35H.-L. Chen, Y.-S. Yang, Thin Solid Films. 2008, 516, 5590.
- 36D. Adler, J. Feinleib, Phys. Rev. B 1970, 2, 3112.
- 37P. Li, Y. Zhang, C. Liang, G. Xing, X. Liu, F. Li, X. Liu, X. Hu, G. Shao, Y. Song, Adv. Energy Mater. 2018, 30, 1805323.
10.1002/adma.201805323 Google Scholar
- 38G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 39J. Jiang, X. Lang, Q. Zeng, M. B. Faheem, H. Zhao, Y. Li, J. Mater. Chem. A 2021, 9, 13220.
- 40E. Bi, W. Tang, H. Chen, Y. Wang, J. Barbaud, T. Wu, W. Kong, P. Tu, H. Zhu, X. Zeng, J. He, S.-I. Kan, X. Yang, M. Grätzel, L. Han, Joule 2019, 3, 2748.
- 41J. Jiang, Z. Jin, F. Gao, J. Sun, Q. Wang, S. F. Liu, Adv. Sci. 2018, 5, 1800474.
- 42Z. Jin, M. Yuan, H. Li, H. Yang, Q. Zhou, H. Liu, X. Lan, M. Liu, J. Wang, E. H. Sargent, Y. Li, Adv. Funct. Mater. 2016, 26, 5284.