Effect of Steric Hindrance of Butylammonium Iodide as Interface Modification Materials on the Performance of Perovskite Solar Cells
Xusheng Zhao
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoeletronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorJun Dong
Key Laboratory for Advanced Materials and Technologies of Clean Energy, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 P. R. China
College of Materials Science and Engineering, Yangtze Normal University, Chongqing, 408100 P. R. China
Search for more papers by this authorDaofu Wu
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoeletronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorJunan Lai
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoeletronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorCun Yun Xu
Key Laboratory for Advanced Materials and Technologies of Clean Energy, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorYanqing Yao
School of Physics and Electronic Science, Zunyi Normal College, Zunyi, 563002 P. R. China
Search for more papers by this authorXiude Yang
School of Physics and Electronic Science, Zunyi Normal College, Zunyi, 563002 P. R. China
Search for more papers by this authorCorresponding Author
Xiaosheng Tang
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoeletronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 P. R. China
Search for more papers by this authorCorresponding Author
Qunliang Song
Key Laboratory for Advanced Materials and Technologies of Clean Energy, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorXusheng Zhao
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoeletronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorJun Dong
Key Laboratory for Advanced Materials and Technologies of Clean Energy, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 P. R. China
College of Materials Science and Engineering, Yangtze Normal University, Chongqing, 408100 P. R. China
Search for more papers by this authorDaofu Wu
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoeletronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorJunan Lai
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoeletronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorCun Yun Xu
Key Laboratory for Advanced Materials and Technologies of Clean Energy, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorYanqing Yao
School of Physics and Electronic Science, Zunyi Normal College, Zunyi, 563002 P. R. China
Search for more papers by this authorXiude Yang
School of Physics and Electronic Science, Zunyi Normal College, Zunyi, 563002 P. R. China
Search for more papers by this authorCorresponding Author
Xiaosheng Tang
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoeletronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 P. R. China
Search for more papers by this authorCorresponding Author
Qunliang Song
Key Laboratory for Advanced Materials and Technologies of Clean Energy, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorAbstract
The efficiency and stability of perovskite solar cells (PSCs) can be effectively improved by interfacial modification with butylammonium iodide (BAI). However, the steric hindrance of BAI is not explored. Herein, BAI with different steric hindrances, that is, n-BAI, iso-BAI (i-BAI), and tert-BAI (t-BAI), are systematically studied as interface modification materials between (FAPbI3)0.95(MAPbBr3)0.05 and spiro-OMeTAD in PSCs. It is found that the efficiency and humidity stability of devices gradually increase in the order of t-BAI-, i-BAI-, n-BAI-modified ones. This seems that the larger steric hindrance hinders BAI diffusion to the grain boundary, resulting in the reduction of grain boundary passivation and the residue of excessive BAI on the surface of perovskite films. Excessive BAI is equivalent to new defects and can block hole transport. As the steric hindrance increases from n-BAI to i-BAI, and further to t-BAI, the device with n-BAI modification shows the highest power conversion efficiency (PCE) of 20.67% with excellent stability in air with a humidity of 20–30%, keeping 80% of the original PCE after 60 days. It is believed that this study can guide the structural selection of modified materials at the interface between perovskite and hole transport layer with n–i–p structure.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200078-sup-0001-SuppData-S1.pdf942.4 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623.
- 2D. Liu, T. L. Kelly, Nat. Photonics 2014, 8, 133.
- 3S. De Wolf, J. Holovsky, S.-J. Moon, P. Loeper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, J. Phys. Chem. Lett. 2014, 5, 1035.
- 4C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019.
- 5G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Graetzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 6A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nat. Phys. 2015, 11, 582.
- 7C. X. Ran, J. T. Xu, W. Y. Gao, C. M. Huang, S. X. Dou, Chem. Soc. Rev. 2018, 47, 4581.
- 8N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
- 9S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang, Q. Dong, H. Wei, J. Huang, Adv. Energy Mater. 2017, 7, 1700302.
- 10C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, Nano Energy 2018, 46, 185.
- 11P. Liu, G. Tang, F. Yan, Sol. RRL 2021, 2100683.
- 12M. M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Adv. Energy Mater. 2018, 8, 1800794.
- 13Z.-L. Tseng, C.-H. Chiang, C.-G. Wu, Sci. Rep. 2015, 5, 13211.
- 14H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
- 15K. Choi, H. Choi, J. Min, T. Kim, D. Kim, S. Y. Son, G. W. Kim, J. Choi, T. Park, Sol. RRL 2020, 4, 1900251.
- 16T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale, B.-J. Hwang, Energy Environ. Sci. 2016, 9, 323.
- 17D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant, S. A. Haque, Energy Environ. Sci. 2016, 9, 1655.
- 18R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 1808843.
- 19B. Kim, S. I. Seok, Energy Environ. Sci. 2020, 13, 805.
- 20H. Yu, Y. Xie, J. Zhang, J. Duan, X. Chen, Y. Liang, K. Wang, L. Xu, Adv. Sci. 2021, 8, 2004510.
- 21J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Y. Yang, Nat. Commun. 2018, 9, 3021.
- 22D. T. Gangadharan, Y. Han, A. Dubey, X. Gao, B. Sun, Q. Qiao, R. Izquierdo, D. Ma, Sol. RRL 2018, 2, 1700215.
- 23D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843.
- 24X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu, D. Yang, J. Li, Y. Liu, D.-M. Smilgies, R. Li, Z. Yang, T. Niu, X. Wang, A. Amassian, K. Zhao, S. Liu, Energy Environ. Sci. 2017, 10, 2095.
- 25Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, H. J. Snaith, Nat. Energy 2017, 2, 17135.
- 26Q. Cheng, H. Xia, X. Li, B. Wang, Y. Li, X. Zhang, H. Zhang, Y. Zhang, H. Zhou, Sol. RRL 2021, 2100805.
- 27Y. Liu, J. Duan, J. Zhang, S. Huang, O.-Y. Wei, Q. Bao, Z. Sun, X. Chen, ACS Appl. Mater. Interfaces 2020, 12, 771.
- 28E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang, E. W.-G. Diau, Energy Environ. Sci. 2018, 11, 2353.
- 29X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He, T. Noda, H. Chen, X. Yang, H. Segawa, Y. Wang, L. Han, Energy Environ. Sci. 2020, 13, 2896.
- 30C. Ma, D. Shen, T.-W. Ng, M.-F. Lo, C.-S. Lee, Adv. Mater. 2018, 30, 1800710.
- 31Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang, X. Zheng, S. Tang, Y. Liu, J. Zhao, J. Huang, J. Phys. Chem. Lett. 2018, 9, 654.
- 32S. Rahmany, L. Etgar, Mater. Adv. 2021, 2, 2617.
- 33S. M. Yoon, H. Min, J. B. Kim, G. Kim, K. S. Lee, S. I. Seok, Joule 2021, 5, 183.
- 34W. Luo, C. Wu, D. Wang, Y. Zhang, Z. Zhang, X. Qi, N. Zhu, X. Guo, B. Qu, L. Xiao, Z. Chen, ACS Appl. Mater. Interfaces 2019, 11, 9149.
- 35H. Kim, S.-U. Lee, D. Y. Lee, M. J. Paik, H. Na, J. Lee, S. I. Seok, Adv. Energy Mater. 2019, 9, 1902740.
- 36A. Ejjoummany, R. Belaroussi, A. El Hakmaoui, M. Akssira, G. Guillaumet, F. Buron, S. Routier, Molecules 2018, 23, 2740.
- 37L. Mao, H. Tsai, W. Nie, L. Ma, J. Im, C. C. Stoumpos, C. D. Malliakas, F. Hao, M. R. Wasielewski, A. D. Mohite, M. G. Kanatzidis, Chem. Mater. 2016, 28, 7781.
- 38K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, S. Liu, Nat. Commun. 2018, 9, 4544.
- 39M. Qin, H. Xue, H. Zhang, H. Hu, K. Liu, Y. Li, Z. Qin, J. Ma, H. Zhu, K. Yan, G. Fang, G. Li, U. S. Jeng, G. Brocks, S. Tao, X. Lu, Adv. Mater. 2020, 32, 2004630.
- 40S. Gharibzadeh, B. A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J. A. Schwenzer, P. Brenner, R. Schmager, A. A. Haghighirad, L. Weinhardt, U. Lemmer, B. S. Richards, I. A. Howard, U. W. Paetzold, Adv. Energy Mater. 2019, 9, 1803699.
- 41C. M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Adv. Mater. 2019, 31, 1700159.
- 42J. Chen, N.-G. Park, Adv. Mater. 2019, 31, 1803019.
- 43T. Cao, Z. Wang, Y. Xia, B. Song, Y. Zhou, N. Chen, Y. Li, ACS Appl. Mater. Interfaces 2016, 8, 18284.
- 44Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Nat. Energy 2017, 2, 1.