High-Efficiency P3HT-Based All-Polymer Solar Cells with a Thermodynamically Miscible Polymer Acceptor
Youle Li
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYue Zhang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorBaoqi Wu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorShuting Pang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorXiyue Yuan
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Chunhui Duan
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510640 P. R. China
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorFei Huang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYong Cao
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYoule Li
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYue Zhang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorBaoqi Wu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorShuting Pang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorXiyue Yuan
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Chunhui Duan
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510640 P. R. China
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorFei Huang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYong Cao
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorAbstract
Poly(3-hexylthiophene) (P3HT) is the most classical conjugated polymer for organic photovoltaics due to its low-cost and synthetic scalability. However, P3HT-based organic photovoltaics suffer from inferior device performance with respect to donor–acceptor copolymers. Particularly, the device performance of P3HT-based all-polymer solar cells (all-PSCs) is rather poor due to the challenges in reaching ideal bulk-heterojunction morphology. Herein, highly efficient P3HT-based all-PSCs by blending P3HT with a thermodynamic miscible polymer acceptor are reported. Among the three state-of-the-art polymer acceptors (N2200, PYT, and DCNBT-IDT), N2200 and PYT are thermodynamically immiscible with P3HT and thus led to excessive phase separation when blended with P3HT, whereas DCNBT-IDT displayed proper thermodynamic miscibility with P3HT and generated the formation of well-mixed fibrillary active layer morphology. As a result, a power conversion efficiency of 7.35% has been achieved by P3HT:DCNBT-IDT blend, which is a new record for P3HT-based all-PSCs and largely higher than any previous results. Broad implication for further efficiency enhancement of P3HT-based all-PSCs is provided in the results and a promising pathway to realize highly efficient yet cost-effective solar energy production is suggested.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
solr202200073-sup-0001-SuppData-S1.pdf1.2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. Liu, C. Zhang, C. Duan, M. Li, Z. Hu, J. Wang, F. Liu, N. Li, C. J. Brabec, R. A. J. Janssen, G. C. Bazan, F. Huang, Y. Cao, J. Am. Chem. Soc. 2018, 140, 8934; b) C. Lee, S. Lee, G.-U. Kim, W. Lee, B. J. Kim, Chem. Rev. 2019, 119, 8028; c) J.-W. Lee, B. S. Ma, J. Choi, J. Lee, S. Lee, K. Liao, W. Lee, T.-S. Kim, B. J. Kim, Chem. Mater. 2020, 32, 582; d) X. Liu, C. Zhang, S. Pang, N. Li, C. J. Brabec, C. Duan, F. Huang, Y. Cao, Front. Chem. 2020, 8, 302; e) Q. Fan, W. Su, S. Chen, W. Kim, X. Chen, B. Lee, T. Liu, U. A. Méndez-Romero, R. Ma, T. Yang, W. Zhuang, Y. Li, Y. Li, T.-S. Kim, L. Hou, C. Yang, H. Yan, D. Yu, E. Wang, Joule 2020, 4, 658.
- 2a) C. Duan, L. Ding, Sci. Bull. 2020, 65, 1508; b) B. Wu, B. Yin, C. Duan, L. Ding, J. Semicond. 2021, 42, 080301; c) Z. Luo, T. Liu, R. Ma, Y. Xiao, L. Zhan, G. Zhang, H. Sun, F. Ni, G. Chai, J. Wang, C. Zhong, Y. Zou, X. Guo, X. Lu, H. Chen, H. Yan, C. Yang, Adv. Mater. 2020, 32, 2005942; d) R. Sun, W. Wang, H. Yu, Z. Chen, X. Xia, H. Shen, J. Guo, M. Shi, Y. Zheng, Y. Wu, W. Yang, T. Wang, Q. Wu, Y. Yang, X. Lu, J. Xia, C. J. Brabec, H. Yan, Y. Li, J. Min, Joule 2021, 5, 1548; e) T. Liu, T. Yang, R. Ma, L. Zhan, Z. Luo, G. Zhang, Y. Li, K. Gao, Y. Xiao, J. Yu, X. Zou, H. Sun, M. Zhang, T. A. Dela Peña, Z. Xing, H. Liu, X. Li, G. Li, J. Huang, C. Duan, K. S. Wong, X. Lu, X. Guo, F. Gao, H. Chen, F. Huang, Y. Li, Y. Li, Y. Cao, B. Tang, et al., Joule 2021, 5, 914; f) J. Zhang, C.-H. Tan, K. Zhang, T. Jia, Y. Cui, W. Deng, X. Liao, H. Wu, Q. Xu, F. Huang, Y. Cao, Adv. Energy Mater. 2021, 11, 2102559; g) J. Jia, Q. Huang, T. Jia, K. Zhang, J. Zhang, J. Miao, F. Huang, C. Yang, Adv. Energy Mater. 2021, 12, 2103193; h) H. Yu, M. Pan, R. Sun, I. Agunawela, J. Zhang, Y. Li, Z. Qi, H. Han, X. Zou, W. Zhou, S. Chen, J. Y. L. Lai, S. Luo, Z. Luo, D. Zhao, X. Lu, H. Ade, F. Huang, J. Min, H. Yan, Angew. Chem., Int. Ed. 2021, 60, 10137; i) Q. Fan, H. Fu, Z. Luo, J. Oh, B. Fan, F. Lin, C. Yang, A. K. Y. Jen, Nano Energy 2022, 92, 106718; j) Y. Zhang, B. Wu, Y. He, W. Deng, J. Li, J. Li, N. Qiao, Y. Xing, X. Yuan, N. Li, C. J. Brabec, H. Wu, G. Lu, C. Duan, F. Huang, Y. Cao, Nano Energy 2022, 93, 106858.
- 3a) K. Do, C. Risko, J. E. Anthony, A. Amassian, J.-L. Brédas, Chem. Mater. 2015, 27, 7643; b) L. Ye, B. A. Collins, X. Jiao, J. Zhao, H. Yan, H. Ade, Adv. Energy Mater. 2018, 8, 1703058; c) S. Pang, B. Wu, B. Zhang, R. Zhang, C. Reckmeier, E. Zhou, C. Duan, F. Huang, Y. Cao, J. Mater. Chem. C 2021, 9, 9515; d) S. Huang, P. Cong, Z. Liu, F. Wu, C. Gong, L. Chen, Y. Chen, Sol. RRL 2021, 5, 2100019; e) L. Zhang, T. Jia, L. Pan, B. Wu, Z. Wang, K. Gao, F. Liu, C. Duan, F. Huang, Y. Cao, Sci. China Chem. 2021, 64, 408.
- 4 C. R. McNeill, Energy Environ. Sci. 2012, 5, 5653.
- 5a) N. Zhou, H. Lin, S. J. Lou, X. Yu, P. Guo, E. F. Manley, S. Loser, P. Hartnett, H. Huang, M. R. Wasielewski, L. X. Chen, R. P. H. Chang, A. Facchetti, T. J. Marks, Adv. Energy Mater. 2014, 4, 1300785; b) O. Alqahtani, M. Babics, J. Gorenflot, V. Savikhin, T. Ferron, A. H. Balawi, A. Paulke, Z. Kan, M. Pope, A. J. Clulow, J. Wolf, P. L. Burn, I. R. Gentle, D. Neher, M. F. Toney, F. Laquai, P. M. Beaujuge, B. A. Collins, Adv. Energy Mater. 2018, 8, 1702941.
- 6 L. Zhu, M. Zhang, W. Zhong, S. Leng, G. Zhou, Y. Zou, X. Su, H. Ding, P. Gu, F. Liu, Y. Zhang, Energy Environ. Sci. 2021, 14, 4341.
- 7a) T. P. Osedach, T. L. Andrew, V. Bulović, Energy Environ. Sci. 2013, 6, 711; b) R. Po, A. Bernardi, A. Calabrese, C. Carbonera, G. Corso, A. Pellegrino, Energy Environ. Sci. 2014, 7, 925; c) R. Po, G. Bianchi, C. Carbonera, A. Pellegrino, Macromolecules 2015, 48, 453; d) N. Li, I. McCulloch, C. J. Brabec, Energy Environ. Sci. 2018, 11, 1355.
- 8 N. Espinosa, M. Hösel, M. Jørgensen, F. C. Krebs, Energy Environ. Sci. 2014, 7, 855.
- 9 X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, Y. Li, Energy Environ. Sci. 2012, 5, 7943.
- 10a) D. Baran, R. S. Ashraf, D. A. Hanifi, M. Abdelsamie, N. Gasparini, J. A. Röhr, S. Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C. J. M. Emmott, J. Nelson, C. J. Brabec, A. Amassian, A. Salleo, T. Kirchartz, J. R. Durrant, I. McCulloch, Nat. Mater. 2017, 16, 363; b) Z. Liang, X. Cheng, Y. Jiang, J. Yu, X. Xu, Z. Peng, L. Bu, Y. Zhang, Z. Tang, M. Li, L. Ye, Y. Geng, ACS Appl. Mater. Interfaces 2021, 13, 61487; c) X. Xu, G. Zhang, L. Yu, R. Li, Q. Peng, Adv. Mater. 2019, 31, 1906045; d) D. Han, Y. Han, Y. Kim, J.-W. Lee, D. Jeong, H. Park, G.-U. Kim, F. S. Kim, B. J. Kim, J. Mater. Chem. A 2022, 10, 640; e) C. Yang, S. Zhang, J. Ren, M. Gao, P. Bi, L. Ye, J. Hou, Energy Environ. Sci. 2020, 13, 2864; f) C. Yang, R. Yu, C. Liu, H. Li, S. Zhang, J. Hou, ChemSusChem 2021, 14, 3607; g) Y. Liu, K. Xian, R. Gui, K. Zhou, J. Liu, M. Gao, W. Zhao, X. Jiao, Y. Deng, H. Yin, Y. Geng, L. Ye, Macromolecules 2022, 55, 133; h) K. Xian, Y. Liu, J. Liu, J. Yu, Y. Xing, Z. Peng, K. Zhou, M. Gao, W. Zhao, G. Lu, J. Zhang, J. Hou, Y. Geng, L. Ye, J. Mater. Chem. A 2022, 10, 3418.
- 11 M. Osaka, D. Mori, H. Benten, H. Ogawa, H. Ohkita, S. Ito, ACS Appl. Mater. Interfaces 2017, 9, 15615.
- 12a) S. Fabiano, Z. Chen, S. Vahedi, A. Facchetti, B. Pignataro, M. A. Loi, J. Mater. Chem. 2011, 21, 5891; b) J. R. Moore, S. Albert-Seifried, A. Rao, S. Massip, B. Watts, D. J. Morgan, R. H. Friend, C. R. McNeill, H. Sirringhaus, Adv. Energy Mater. 2011, 1, 230; c) H. Yan, B. A. Collins, E. Gann, C. Wang, H. Ade, C. R. McNeill, ACS Nano 2012, 6, 677.
- 13 M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, D. Neher, Adv. Energy Mater. 2012, 2, 369.
- 14a) Y. Zhou, Q. Yan, Y.-Q. Zheng, J.-Y. Wang, D. Zhao, J. Pei, J. Mater. Chem. A 2013, 1, 6609; b) W. Liu, R. Tkachov, H. Komber, V. Senkovskyy, M. Schubert, Z. Wei, A. Facchetti, D. Neher, A. Kiriy, Polym. Chem. 2014, 5, 3404.
- 15 H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
- 16 W. Wang, Q. Wu, R. Sun, J. Guo, Y. Wu, M. Shi, W. Yang, H. Li, J. Min, Joule 2020, 4, 1070.
- 17 S. Shi, P. Chen, Y. Chen, K. Feng, B. Liu, J. Chen, Q. Liao, B. Tu, J. Luo, M. Su, H. Guo, M.-G. Kim, A. Facchetti, X. Guo, Adv. Mater. 2019, 31, 1905161.
- 18a) L. Zhu, W. Zhong, C. Qiu, B. Lyu, Z. Zhou, M. Zhang, J. Song, J. Xu, J. Wang, J. Ali, W. Feng, Z. Shi, X. Gu, L. Ying, Y. Zhang, F. Liu, Adv. Mater. 2019, 31, 1902899; b) Z. Li, L. Ying, P. Zhu, W. Zhong, N. Li, F. Liu, F. Huang, Y. Cao, Energy Environ. Sci. 2019, 12, 157; c) Q. Wu, W. Wang, Y. Wu, Z. Chen, J. Guo, R. Sun, J. Guo, Y. Yang, J. Min, Adv. Funct. Mater. 2021, 31, 2010411; d) X. Xu, K. Feng, L. Yu, H. Yan, R. Li, Q. Peng, ACS Energy Lett. 2020, 5, 2434.
- 19 J. Wang, G. Cai, B. Jia, H. Lu, X. Lu, X. Zhan, X. Chen, J. Mater. Chem. A 2021, 9, 6520.
- 20 S. R. Cowan, A. Roy, A. J. Heeger, Phys. Rev. B 2010, 82, 245207.
- 21 L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, Appl. Phys. Lett. 2005, 86, 123509.
- 22 C. Kaiser, O. J. Sandberg, N. Zarrabi, W. Li, P. Meredith, A. Armin, Nat. Commun. 2021, 12, 3988.
- 23 T. Nishi, T. T. Wang, Macromolecules 1975, 8, 909.
- 24 D. R. Kozub, K. Vakhshouri, L. M. Orme, C. Wang, A. Hexemer, E. D. Gomez, Macromolecules 2011, 44, 5722.