Solar-Initiated Frontal Polymerization of Photothermic Hydrogels with High Swelling Properties for Efficient Water Evaporation
Yunzheng Liang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorYuting Bai
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorAn-Quan Xie
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorJian Mao
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorCorresponding Author
Liangliang Zhu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 P. R. China
Search for more papers by this authorCorresponding Author
Su Chen
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorYunzheng Liang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorYuting Bai
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorAn-Quan Xie
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorJian Mao
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorCorresponding Author
Liangliang Zhu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 P. R. China
Search for more papers by this authorCorresponding Author
Su Chen
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorAbstract
Hydrogel-based photothermal materials for enhanced solar water evaporation have drawn increasing attention due to their unique hierarchical nanostructure, reduced latent heat, and high evaporation rate. However, the laborious preparation process and high energy consumption restrict the on-site applicability and immediacy, seriously obstructing practical application of hydrogel evaporators. Herein, a low-cost hydrogel evaporator ($1.85 m−2) with high swelling ratio (≈2445%) prepared via solar-initiated frontal polymerization (FP) is demonstrated. Solar-initiated FP based on solar thermal technology not only realizes the field rapid hydrogel polymerization without extra energy input and complicated equipment, but also achieves the homogeneous interconnected macroporous structure to enhance water uptake (≈70 times evaporator weight) and light absorption (≈1% transmittance and ≈2% reflectance). Due to the lower vaporization enthalpy, the evaporator presented an evaporation rate of 2.42 kg m−2 h−1 with a light-to-vapor efficiency of ≈92.8% under 1 sun. More importantly, the high swelling ratio imparts the hydrogel evaporator with 2700% and 900% expansion in volume and surface area, resulting in a dramatically promoted solar evaporation rate compared with non-swelling photothermic materials. This feasible approach realizes the all-process solar thermal utilization, from material synthesis to final application, which would be significant for sustainable freshwater production in remote/off-grid areas.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
solr202100917-sup-0001-SuppData-S1.pdf1.6 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Gao, L. Zhu, C. K. Peh, G. W. Ho, Energy Environ. Sci. 2019, 12, 841.
- 2A. F. Van Loon, T. Gleeson, J. Clark, A. I. J. M. Van Dijk, K. Stahl, J. Hannaford, G. Di Baldassarre, A. J. Teuling, L. M. Tallaksen, R. Uijlenhoet, D. M. Hannah, J. Sheffield, M. Svoboda, B. Verbeiren, T. Wagener, S. Rangecroft, N. Wanders, H. A. J. Van Lanen, Nat. Geosci. 2016, 9, 89.
- 3M. M. Mekonnen, A. Y. Hoekstra, Sci. Adv. 2016, 2, 1500323.
- 4T. Oki, S. Kanae, Science 2006, 313, 1068.
- 5H. Liu, H. G. Ye, M. Gao, Q. Li, Z. Liu, A. Q. Xie, L. Zhu, G. W. Ho, S. Chen, Adv. Sci. 2021, 8, 2101232.
- 6Z. Liu, R. K. Qing, A. Q. Xie, H. Liu, L. Zhu, S. Chen, ACS Appl. Mater. Interfaces 2021, 13, 18829.
- 7J. Li, M. Du, G. Lv, L. Zhou, X. Li, L. Bertoluzzi, C. Liu, S. Zhu, J. Zhu, Adv. Mater. 2018, 30, 1805159.
- 8B. Shao, Y. Wang, X. Wu, Y. Lu, X. Yang, G. Y. Chen, G. Owens, H. Xu, J. Mater. Chem. A 2020, 8, 11665.
- 9J. Li, X. Wang, Z. Lin, N. Xu, X. Li, J. Liang, W. Zhao, R. Lin, B. Zhu, G. Liu, L. Zhou, S. Zhu, J. Zhu, Joule 2020, 4, 928.
- 10L. Zhu, M. Gao, C. K. N. Peh, G. W. Ho, Mater. Horiz. 2018, 5, 323.
- 11L. Zhu, M. Gao, C. K. N. Peh, G. W. Ho, Nano Energy 2019, 57, 507.
- 12H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Nat. Commun. 2014, 5, 4449.
- 13M. S. Irshad, N. Arshad, X. Wang, H. R. Li, M. Q. Javed, Y. Xu, L. A. Alshahrani, T. Mei, J. Li, Sol. RRL 2021, 5, 2100427.
- 14I. Ibrahim, D. H. Seo, A. M. McDonagh, H. K. Shon, L. Tijing, Desalination 2021, 500, 114853.
- 15H. Liu, C. Chen, H. Wen, R. Guo, N. A. Williams, B. Wang, F. Chen, L. Hu, J. Mater. Chem. A 2018, 6, 18839.
- 16M. Gao, C. K. Peh, H. T. Phan, L. Zhu, G. W. Ho, Adv. Energy Mater. 2018, 8, 1800711.
- 17L. Zhu, M. Gao, C. K. N. Peh, X. Wang, G. W. Ho, Adv. Energy Mater. 2018, 8, 1702149.
- 18Q. Zhang, X. Xiao, G. Zhao, H. Yang, H. Cheng, L. Qu, W. Xu, X. Wang, J. Mater. Chem. A 2021, 9, 10945.
- 19X. Zhou, Y. Guo, F. Zhao, G. Yu, Acc. Chem. Res. 2019, 52, 3244.
- 20Q. F. Guan, H. B. Yang, Z. M. Han, Z. C. Ling, C. H. Yin, K. P. Yang, Y. X. Zhao, S. H. Yu, ACS Nano 2021, 15, 7889.
- 21Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu, X. Yang, ACS Nano 2021, 15, 10366.
- 22S. W. Sharshir, A. M. Algazzar, K. A. Elmaadawy, A. W. Kandeal, M. R. Elkadeem, T. Arunkumar, J. Zang, N. Yang, Desalination 2020, 491, 114564.
- 23F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Nat. Rev. Mater. 2020, 5, 388.
- 24M. S. Irshad, N. Arshad, X. Wang, Global Challenges 2020, 5, 2000055.
- 25W. Lei, S. Khan, L. Chen, N. Suzuki, C. Terashima, K. Liu, A. Fujishima, M. Liu, Nano Res. 2020, 14, 1135.
- 26M. S. Irshad, X. Wang, M. S. Abbasi, N. Arshad, Z. Chen, Z. Guo, L. Yu, J. Qian, J. You, T. Mei, ACS Sustainable Chem. Eng. 2021, 9, 3887.
- 27Y. Guo, F. Zhao, X. Zhou, Z. Chen, G. Yu, Nano Lett. 2019, 19, 2530.
- 28F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 2018, 13, 489.
- 29B. Ryplida, K. D. Lee, I. In, S. Y. Park, Adv. Funct. Mater. 2019, 29, 1903209.
- 30E. M. Ahmed, J. Adv. Res. 2015, 6, 105.
- 31W. Xu, Y. Xing, J. Liu, H. Wu, Y. Cui, D. Li, D. Guo, C. Li, A. Liu, H. Bai, ACS Nano 2019, 13, 7930.
- 32Y. Sun, J. Gao, Y. Liu, H. Kang, M. Xie, F. Wu, H. Qiu, Chem. Eng. Sci. 2019, 207, 516.
- 33J.-D. Liu, X.-Y. Du, C.-F. Wang, Q. Li, S. Chen, J. Mater. Chem. C 2020, 8, 14083.
- 34N. M. Chechilo, R. J. Khvilivitskii, N. S. Enikolopyan, Dokl. Akad. Nauk SSSR 1972, 204, 1180.
- 35Q. Li, J.-D. Liu, S.-S. Liu, C.-F. Wang, S. Chen, Ind. Eng. Chem. 2019, 58, 3885.
10.1002/anie.201813972 Google Scholar
- 36M. Garg, J. E. Aw, X. Zhang, P. J. Centellas, L. M. Dean, E. M. Lloyd, I. D. Robertson, Y. Liu, M. Yourdkhani, J. S. Moore, P. H. Geubelle, N. R. Sottos, Nat. Commun. 2021, 12, 2836.
- 37I. D. Robertson, M. Yourdkhani, P. J. Centellas, J. E. Aw, D. G. Ivanoff, E. Goli, E. M. Lloyd, L. M. Dean, N. R. Sottos, P. H. Geubelle, J. S. Moore, S. R. White, Nature 2018, 557, 223.
- 38Q. Z. Yan, W. F. Zhang, G. D. Lu, X. T. Su, C. C. Ge, Chemistry 2005, 11, 6609.
- 39I. P. Nagy, L. Sike, J. A. Pojman, J. Am. Chem. Soc. 1995, 117, 3611.
- 40R. P. Washington, O. Steinbock, J. Am. Chem. Soc. 2001, 123, 7933.
- 41Y. Fang, H. Yu, L. Chen, S. Chen, Chem. Mater. 2009, 21, 4711.
- 42Z. Jiménez, C. Bounds, C. E. Hoyle, A. B. Lowe, H. Zhou, J. A. Pojman, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 3009.
- 43J. Zhou, W.-Q. Tang, C.-F. Wang, L. Chen, Q. Chen, S. Chen, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3736.
- 44J. Rigolini, F. Bombled, F. Ehrenfeld, K. El Omari, Y. Le Guer, B. Grassl, Macromolecules 2011, 44, 4462.
- 45Z.-F. Zhou, C. Yu, X.-Q. Wang, W.-Q. Tang, C.-F. Wang, S. Chen, J. Mater. Chem. A 2013, 1, 7326.
- 46L. M. Dean, A. Ravindra, A. X. Guo, M. Yourdkhani, N. R. Sottos, ACS Appl. Polym. Mater. 2020, 2, 4690.
- 47S. Fiori, A. Mariani, Macromolecules 2003, 36, 2674.
- 48M. A. Moharram, H. M. El-Gendy, J. Appl. Polym. Sci. 2002, 85, 2699.
- 49M. Q. Yang, C. F. Tan, W. Lu, K. Zeng, G. W. Ho, Adv. Funct. Mater. 2020, 30, 2004460.
- 50H. Yao, P. Zhang, Y. Huang, H. Cheng, C. Li, L. Qu, Adv. Mater. 2020, 32, 1905875.
- 51L. Zhu, T. Ding, M. Gao, C. K. N. Peh, G. W. Ho, Adv. Energy Mater. 2019, 9, 1900250.
- 52J. Xiao, Y. Guo, W. Luo, D. Wang, S. Zhong, Y. Yue, C. Han, R. Lv, J. Feng, J. Wang, W. Huang, X. Tian, W. Xiao, Y. Shen, Nano Energy 2021, 87, 106213.
- 53Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou, G. Yu, Energy Environ. Sci. 2020, 13, 2087.
- 54X. Zhang, G. Wu, X.-C. Yang, ACS Appl. Nano Mater. 2020, 3, 9706.
- 55C. Wang, J. Wang, Z. Li, K. Xu, T. Lei, W. Wang, J. Mater. Chem. A 2020, 8, 9528.
- 56F. Gong, H. Li, W. Wang, J. Huang, D. Xia, J. Liao, M. Wu, D. V. Papavassiliou, Nano Energy 2019, 58, 322.
- 57X. Deng, Q. Nie, Y. Wu, H. Fang, P. Zhang, Y. Xie, ACS Appl. Mater. Interfaces 2020, 12, 26200.
- 58F. Wu, D. Liu, G. Li, L. Li, L. Yan, G. Hong, X. Zhang, Nanoscale 2021, 13, 5419.
- 59N. Ma, Q. Fu, Y. Hong, X. Hao, X. Wang, J. Ju, J. Sun, ACS Appl. Mater. Interfaces 2020, 12, 18165.
- 60C. Jia, Y. Li, Z. Yang, G. Chen, Y. Yao, F. Jiang, Y. Kuang, G. Pastel, H. Xie, B. Yang, S. Das, L. Hu, Joule 2017, 1, 588.
- 61X. Wu, T. Gao, C. Han, J. Xu, O. Gary, H. Xu, Sci. Bull. 2019, 64, 1625.
- 62M. S. Irshad, X. Wang, A. Abbas, F. Yu, J. Li, J. Wang, T. Mei, J. Qian, S. Wu, M. Q. Javed, Carbon 2021, 176, 313.
- 63R. Chen, X. Wang, Q. Gan, T. Zhang, K. Zhu, M. Ye, J. Mater. Chem. A 2019, 7, 11177.