All-Slot-Die-Coated Inverted Perovskite Solar Cells in Ambient Conditions with Chlorine Additives
Thai Son Le
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorCorresponding Author
Danila Saranin
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorPavel Gostishchev
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorInga Ermanova
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorTatiana Komaricheva
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorLev Luchnikov
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorDmitry Muratov
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorAlexander Uvarov
Renewable Energy Laboratory, Alferov University, Saint-Petersburg, 194021 Russia
Search for more papers by this authorEkaterina Vyacheslavova
Renewable Energy Laboratory, Alferov University, Saint-Petersburg, 194021 Russia
Search for more papers by this authorIvan Mukhin
Renewable Energy Laboratory, Alferov University, Saint-Petersburg, 194021 Russia
Search for more papers by this authorSergey Didenko
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorDenis Kuznetsov
Department of Functional NanoSystems and High-Temperature Materials, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorCorresponding Author
Aldo Di Carlo
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
CHOSE—Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
Search for more papers by this authorThai Son Le
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorCorresponding Author
Danila Saranin
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorPavel Gostishchev
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorInga Ermanova
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorTatiana Komaricheva
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorLev Luchnikov
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorDmitry Muratov
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorAlexander Uvarov
Renewable Energy Laboratory, Alferov University, Saint-Petersburg, 194021 Russia
Search for more papers by this authorEkaterina Vyacheslavova
Renewable Energy Laboratory, Alferov University, Saint-Petersburg, 194021 Russia
Search for more papers by this authorIvan Mukhin
Renewable Energy Laboratory, Alferov University, Saint-Petersburg, 194021 Russia
Search for more papers by this authorSergey Didenko
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorDenis Kuznetsov
Department of Functional NanoSystems and High-Temperature Materials, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
Search for more papers by this authorCorresponding Author
Aldo Di Carlo
L.A.S.E.—Laboratory for Advanced Solar Energy, National University of Science and Technology “MISiS,”, Moscow, 119049 Russia
CHOSE—Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
Search for more papers by this authorAbstract
Large-scale solution printing perovskite photovoltaics is one of the key technological advantages in comparison to the manufacturing of wafer-based solar cells (Si, GaAs, etc.). Herein, all-slot-die-coated perovskite solar cells (PSCs) in p–i–n (inverse) configuration with a process fully performed out of the glove box in ambient conditions are demonstrated. The successful implementation of the approach is demonstrated for devices based on the MAPbI3 and CsFAPbI3 perovskite absorbers with four slot-die-coated layers—NiO x /perovskite/PCBM/BCP. Noticeably, the use of Cl-containing additives MACl and FACl in combination with vacuum quenching is found to be essential for the reproducible and controllable crystallization of the perovskite films. Moreover, vacuum quenching shows beneficial results also for the morphology of thin electron transporting layers—PCBM (40 nm) and BCP (11 nm). Finally, the power conversion efficiency (PCE) of the all-slot-die-coated PSCs reaches the level of >16% for MAPbI3 and >17% for CsFAPbI3-based devices. Slot-die coating fabrication is successfully upscaled for minimodules (total active area 2.1 cm2), which demonstrates up to 14.9% of PCE. This result demonstrates the high potential of the slot-die printing for sheet-to-sheet fabrication of PSCs and unravels the specifics for each functional layer in the p–i–n device.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
solr202100807-sup-0001-SuppData-S1.pdf4 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 https://www.nrel.gov/pv/cell-efficiency.html (accessed: October 2021).
- 2 A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, Nano Lett. 2014, 14, 3608.
- 3 Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28, 284.
- 4 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 5 S. Y. Kim, Y. Yun, S. Shin, J. H. Lee, Y. W. Heo, S. Lee, Scr. Mater. 2019, 166, 107.
- 6 J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. Song, C. Chen ACS Nano 2014. 8, 1674.
- 7 J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
- 8 A. Dubey, N. Adhikari, S. Mabrouk, F. Wu, K. Chen, S. Yang, Q. Qiao, J. Mater. Chem. A 2018, 6, 2406.
- 9 L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S. Wang, L. Xiao, Q. Gong, Dalt. Trans. 2015, 44, 10582.
- 10 Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, J. Huang, Nat. Energy 2018, 3, 560.
- 11 Y. Zhong, R. Munir, J. Li, M.-C. Tang, M. R. Niazi, D.-M. Smilgies, K. Zhao, A. Amassian, ACS Energy Lett. 2018, 3, 1078.
- 12 S. G. Li, K. J. Jiang, M. J. Su, X. P. Cui, J. H. Huang, Q. Q. Zhang, X. Q. Zhou, L. M. Yang, Y. L. Song, J. Mater. Chem. A 2015, 3, 9092.
- 13 R. Patidar, D. Burkitt, K. Hooper, D. Richards, T. Watson, Mater. Today Commun. 2020, 22, 100808.
- 14 C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, Nano Energy 2018, 46, 185.
- 15 Y. Y. Kim, E. Y. Park, T. Y. Yang, J. H. Noh, T. J. Shin, N. J. Jeon, J. Seo, J. Mater. Chem. A 2018, 6, 12447.
- 16 Y. Galagan, F. Di Giacomo, H. Gorter, G. Kirchner, I. De Vries, Adv. Energy Mater. 2018, 8, 1801935.
- 17 S. Razza, S. Castro-Hermosa, A. Di Carlo, T. M. Brown, Apl Mater. 2016, 4, 091508.
- 18 S. I. Na, Y. H. Seo, Y. C. Nah, S. S. Kim, H. Heo, J. E. Kim, N. Rolston, R. H. Dauskardt, M. Gao, Y. Lee, D. Vak, Adv. Funct. Mater. 2019, 29, 1.
- 19 Z. Yang, S. Zhang, L. Li, W. Chen, J. Mater. 2017, 3, 231.
- 20 W. W. Liu, T. H. Wu, M. C. Liu, W. J. Niu, Y. L. Chueh, Adv. Mater. Interfaces 2019, 6, 1.
- 21 D. H. Kim, J. B. Whitaker, Z. Li, M. F. A. M. Van Hest, K. Zhu, Joule 2018, 2, 1437.
- 22 J. Ding, Q. Han, Q. Q. Ge, D. J. Xue, J. Y. Ma, B. Y. Zhao, Y. X. Chen, J. Liu, D. B. Mitzi, J. S. Hu, Joule 2019, 3, 402.
- 23 S. Sánchez, M. Vallés-Pelarda, J. A. Alberola-Borràs, R. Vidal, J. J. Jerónimo-Rendón, M. Saliba, P. P. Boix, I. Mora-Seró, Mater. Today 2019, 31, 39.
- 24 M. Q. Hovish, N. Rolston, K. Brüning, F. Hilt, C. Tassone, R. H. Dauskardt, J. Mater. Chem. A 2020, 8, 169.
- 25 J. E. Bishop, J. A. Smith, C. Greenland, V. Kumar, N. Vaenas, O. S. Game, T. J. Routledge, M. Wong-Stringer, C. Rodenburg, D. G. Lidzey, ACS Appl. Mater. Interfaces 2018, 10, 39428.
- 26 X. Li, X. Li, D. Bi, C. Yi, J. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 8060, 1.
- 27 F. Guo, S. Qiu, J. Hu, H. Wang, B. Cai, J. Li, X. Yuan, X. Liu, K. Forberich, C. J. Brabec, Y. Mai, Adv. Sci. 2019, 6, 1901067.
- 28 J. Li, J. Dagar, O. Shargaieva, M. A. Flatken, H. Köbler, M. Fenske, C. Schultz, B. Stegemann, J. Just, D. M. Többens, A. Abate, R. Munir, E. Unger, Adv. Energy Mater. 2021, 11, 2003460.
- 29 A. S. Subbiah, F. H. Isikgor, C. T. Howells, M. De Bastiani, J. Liu, E. Aydin, F. Furlan, T. G. Allen, F. Xu, S. Zhumagali, S. Hoogland, E. H. Sargent, I. McCulloch, S. De Wolf, ACS Energy Lett. 2020, 5, 3034.
- 30 L. Gao, K. Huang, C. Long, F. Zeng, B. Liu, J. Yang, Appl. Phys. A 2020, 126, 1.
- 31 A. Al Mamun, T. Tasnim, T. M. Abdel-fattah, H. Jun, Sol. Energy 2019, 188, 609.
- 32 Y. Jung, K. Hwang, Y. Heo, J. Kim, D. Lee, C. Lee, H. Joh, J. Yeo, D. Kim ACS Appl. Mater. Interfaces 2017, 9, 27832.
- 33 J. Ciro, M. A. Mejía-Escobar, F. Jaramillo, Sol. Energy 2017, 150, 570.
- 34 S. Hong, J. Lee, H. Kang, K. Lee, Sol. Energy Mater. Sol. Cells 2013, 112, 27.
- 35 J. Seong, J. Park, J. Lee, B. Ahn, J. H. Yeom, J. Kim, T. Hassinen, S. Rhee, S. Ko, D. Lee, K. H. Shin, IEEE Trans. Components, Packag. Manuf. Technol. 2016, 6, 1677.
- 36 D. Di Girolamo, N. Phung, M. Jošt, A. Al-Ashouri, G. Chistiakova, J. Li, J. A. Márquez, T. Unold, L. Korte, S. Albrecht, A. Di Carlo, D. Dini, A. Abate, Adv. Mater. Interfaces 2019, 6, 1900789.
- 37 D. S. Saranin, V. N. Mazov, L. O. Luchnikov, D. A. Lypenko, D. M. Migunov, S. I. Didenko, M. N. Orlova, D. V. Kuznetsov, R. Tameev, A. Di, J. Mater. Chem. C 2018, 6, 6179.
- 38 L. Hu, M. Li, K. Yang, Z. Xiong, B. Yang, M. Wang, X. Tang, Z. Zang, X. Liu, B. Li, Z. Xiao, S. Lu, H. Gong, J. Ouyang, K. Sun, J. Mater. Chem. A 2018, 6, 16583.
- 39 W. Chen, F. Z. Liu, X. Y. Feng, A. B. Djurišić, W. K. Chan, Z. B. He, Adv. Energy Mater. 2017, 7, 1700722.
- 40 D. Di Girolamo, F. Di Giacomo, F. Matteocci, A. G. Marrani, D. Dini, A. Abate, D. Di Girolamo, Chem. Sci. 2020, 11, 7746.
- 41 Z. Chen, T. Dedova, I. O. Acik, M. Danilson, M. Krunks, Appl. Surf. Sci. 2021, 548, 149118.
- 42 Y. Guo, Z. Jin, S. Yuan, J. S. Zhao, M. Y. Hao, Y. Qin, L. M. Fu, J. P. Zhang, X. C. Ai, J. Power Sources 2020, 452, 227845.
- 43 D. S. Saranin, V. N. Mazov, L. O. Luchnikov, D. A. Lypenko, P. A. Gostishev, D. S. Muratov, D. A. Podgorny, D. M. Migunov, S. I. Didenko, M. N. Orlova, D. V. Kuznetsov, A. R. Tameev, A. Di Carlo, J. Mater. Chem. C 2018, 6, 6179.
- 44 K. Wang, Y. Tian, H. Jiang, M. Chen, S. Xu, Int. J. Photoenergy 2019, 2019, 1.
- 45 Y. Nishihara, M. Chikamatsu, S. Kazaoui, T. Miyadera, Y. Yoshida, Japan. J. Appl. Phys. 2018, 57, 04FS07.
- 46 T. Wang, M. Xie, S. Abbasi, Z. Cheng, H. Liu, W. Shen, J. Power Sources 2020, 448, 227584.
- 47 A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, N. S. McIntyre, Surf. Sci. 2006, 600, 1771.
- 48 D. Saranin, T. Komaricheva, L. Luchnikov, D. S. Muratov, T. S. Le, Y. Karpov, P. Gostishchev, S. Yurchuk, D. Kuznetsov, S. Didenko, A. Di Carlo, Sol. Energy Mater. Sol. Cells 2021, 227, 111095.
- 49 E. Von Hauff, V. Dyakonov, J. Parisi, Sol. Energy Mater. Sol. Cells 2005, 15, 1979.
- 50 D. Wang, N. K. Elumalai, M. A. Mahmud, M. B. Upama, M. Wright, K. H. Chan, C. Xu, A. Uddin, In Conf. Record of the IEEE Photovoltaic Specialists Conf., Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 2016, pp. 1670–1672.
- 51 M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. Van Hest, K. Zhu, Nat. Energy 2017, 2, 1.
- 52 I. Ermanova, N. Yaghoobi Nia, E. Lamanna, E. Di Bartolomeo, E. Kolesnikov, L. Luchnikov, A. Di Carlo, Energies 2021, 14, 1751.
- 53 L. A. Castriotta, F. Matteocci, L. Vesce, L. Cinà, A. Agresti, S. Pescetelli, A. Ronconi, M. Löffler, M. M. Stylianakis, F. Di Giacomo, P. Mariani, M. Stefanelli, E. M. Speller, A. Alfano, B. Paci, A. Generosi, F. Di Fonzo, A. Petrozza, B. Rellinghaus, E. Kymakis, A. Di Carlo, ACS Appl. Mater. Interfaces 2021, 13, 11741.
- 54 Z. Li, C. Kolodziej, C. McCleese, L. Wang, A. Kovalsky, A. C. Samia, Y. Zhao, C. Burda, Nanoscale Adv. 2019, 1, 827.
- 55 Y. Zhao, K. Zhu, J. Phys. Chem. C 2014, 118, 9412.
- 56 Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan, J. Ding, RSC Adv. 2015, 5, 60562.
- 57 Y. Wu, X. Li, S. Fu, L. Wan, J. Fang, J. Mater. Chem. A 2019, 7, 8078.
- 58 J. Jang, G. Choe, S. Yim, ACS Appl. Mater. Interfaces 2019, 11, 20073.
- 59 J. Thiesbrummel, V. M. Le Corre, F. Peña-Camargo, L. Perdigón-Toro, F. Lang, F. Yang, M. Grischek, E. Gutierrez-Partida, J. Warby, M. D. Farrar, S. Mahesh, P. Caprioglio, S. Albrecht, D. Neher, H. J. Snaith, M. Stolterfoht, Adv. Energy Mater. 2021, 11, 2101447.
- 60 J. M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy Environ. Sci. 2015, 8, 2118.
- 61 C. Li, A. Guerrero, Y. Zhong, S. Huettner, J. Phys. Condens. Matter 2017, 29, 193001.
- 62 K. Domanski, W. Tress, T. Moehl, M. Saliba, M. K. Nazeeruddin, M. Grätzel, Adv. Funct. Mater. 2015, 25, 6936.
- 63 A. S. Shikoh, A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, D. S. Saranin, S. I. Didenko, D. V. Kuznetsov, A. Agresti, S. Pescetelli, A. Di Carlo, ECS J. Solid State Sci. Technol. 2020, 9, 065015.
- 64 A. S. Shikoh, A. Y. Polyakov, P. Gostishchev, D. S. Saranin, I. V. Shchemerov, S. I. Didenko, A. Di Carlo, Appl. Phys. Lett. 2021, 118, 093501.
- 65 L. Zhang, S. Chen, X. Wang, D. Wang, Y. Li, Q. Ai, X. Sun, J. Chen, Y. Li, X. Jiang, S. Yang, B. Xu, Sol. RRL 2021, 5, 2100106.
- 66 F. Schackmar, H. Eggers, M. Frericks, B. S. Richards, U. Lemmer, G. Hernandez-Sosa, U. W. Paetzold, Adv. Mater. Technol. 2021, 6, 2000271.
- 67 S. Castro-Hermosa, L. Wouk, I. S. Bicalho, L. de Queiroz Corrêa, B. de Jong, L. Cinà, T. M. Brown, D. Bagnis, S. Castro-Hermosa, L. Wouk, I. S. Bicalho, L. de Queiroz Corrêa, B. de Jong, L. Cinà, T. M. Brown, D. Bagnis, NaRes 2021, 14, 1034.
- 68 D. Burkitt, J. Searle, T. Watson, R. Soc. Open Sci. 2018, 5, 172158.
- 69 M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y. B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. (Frank) Liu, Y. L. Loo, J. M. Luther, et al., Nat. Energy 2020, 5, 35.
- 70 N. G. Park, Adv. Energy Mater. 2020, 10, 1.
- 71 R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 1808843.
- 72 I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, G. Grancini, C. Rolda, Nat. Commun. 2017, 8, 15684.
- 73 B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48, 3842.
- 74 S. Chen, G. Shi, Adv. Mater. 2017, 29, 1605448.
- 75 N. Ahn, K. Kwak, M. S. Jang, H. Yoon, B. Y. Lee, J.-K. Lee, P. V. Pikhitsa, J. Byun, M. Choi, Nat. Commun. 2016, 7, 13422.
- 76 H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Nano-Micro Lett. 2017, 9, 39.
- 77 D. Di Girolamo, F. Matteocci, F. U. Kosasih, G. Chistiakova, W. Zuo, G. Divitini, L. Korte, C. Ducati, A. Di Carlo, D. Dini, A. Abate, Adv. Energy Mater. 2019, 9, 1901642.
- 78 A. G. Boldyreva, A. F. Akbulatov, M. Elnaggar, S. Y. Luchkin, A. V. Danilov, I. S. Zhidkov, O. R. Yamilova, Y. S. Fedotov, S. I. Bredikhin, E. Z. Kurmaev, K. J. Stevenson, P. A. Troshin, Sustain. Energy Fuels 2019, 3, 2705.
- 79 G. Ren, W. Han, Y. Deng, W. Wu, Z. Li, J. Guo, H. Bao, C. Liu, W. Guo, J. Mater. Chem. A 2021, 9, 4589.