Integrated and Unassisted Solar Water-Splitting System by Monolithic Perovskite/Silicon Tandem Solar Cell
Manjing Wang
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorBiao Shi
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorQixing Zhang
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorXingliang Li
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorSanjing Pan
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorYing Zhao
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Xiaodan Zhang
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorManjing Wang
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorBiao Shi
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorQixing Zhang
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorXingliang Li
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorSanjing Pan
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorYing Zhao
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Xiaodan Zhang
Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Solar Energy Conversion Center, Tianjin, 300350 China
Search for more papers by this authorAbstract
Photoelectrochemical (PEC) water splitting to hydrogen is a clean process that can achieve green hydrogen. However, the integrated PEC devices have some problems, such as serious incident light loss, poor stability, and high cost. Here, the low-cost perovskite/silicon tandem cell instead of the costly III−V tandem cell as the light absorber is used, combined with high-transmittance quartz glass as a protective layer forming an unassisted solar water-splitting device. Quartz glass can minimize incident light loss and prevent electrolyte corrosion of solar cells. A solar-to-hydrogen efficiency of 19.68% is achieved, and the performance can be maintained for 20 h without noticeable change. This structure design provides a novel integrated solar water-splitting system.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
solr202100748-sup-0001-SuppData-S1.zip3.1 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 N. S. Lewis, Science 2016, 351, aad1920.
- 2 N. Armaroli, V. Balzani, Angew. Chem., Int. Ed. 2007, 46, 52.
- 3 T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520.
- 4 Y. Yang, J. Gu, J. L. Young, E. M. Miller, J. A. Turner, N. R. Neale, M. C. Beard, Science 2015, 350, 1061.
- 5 O. Khaselev, J. A. Turner, Science 1998, 280, 425.
- 6 A. Heller, B. Miller, H. J. Lewerenz, K. J. Bachmann, J. Am. Chem. Soc. 1980, 102, 6555.
- 7 Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511.
- 8 S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005.
- 9 M. Gratzel, Nature 2001, 414, 338.
- 10 A. Heller, Science 1984, 223, 1141.
- 11 F. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294.
- 12 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
- 13 N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
- 14 A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 15 T. W. Kim, K. S. Choi, Science 2014, 343, 990.
- 16 Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo, T. Kitamori, Sci. Rep. 2015, 5, 11141.
- 17 J. H. Kim, J. W. Jang, Y. H. Jo, F. F. Abdi, Y. H. Lee, R. van de Krol, J. S. Lee, Nat. Commun. 2016, 7, 13380.
- 18 J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, J. S. Lee, Sci. Rep. 2013, 3, 2681.
- 19 J. H. Kim, J. S. Lee, Adv. Mater. 2019, 31, e1806938.
- 20 J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. Ng, T. Bilir, J. S. Harris, T. F. Jaramillo, Nat. Commun. 2016, 7, 13237.
- 21 E. Miller, Int. J. Hydrogen Energy 2003, 28, 615.
- 22 A. Rothschild, H. Dotan, ACS Energy Lett. 2016, 2, 45.
- 23 Gurudayal, D. Sabba, M. H. Kumar, L. H. Wong, J. Barber, M. Gratzel, N. Mathews, Nano Lett. 2015, 15, 3833.
- 24 J. W. Jang, C. Du, Y. Ye, Y. Lin, X. Yao, J. Thorne, E. Liu, G. McMahon, J. Zhu, A. Javey, J. Guo, D. Wang, Nat. Commun. 2015, 6, 7447.
- 25 Gurudayal, R. A. John, P. P. Boix, C. Yi, C. Shi, M. C. Scott, S. A. Veldhuis, A. M. Minor, S. M. Zakeeruddin, L. H. Wong, M. Gratzel, N. Mathews, ChemSusChem 2017, 10, 2449.
- 26 W.-H. Cheng, M. H. Richter, M. M. May, J. Ohlmann, D. Lackner, F. Dimroth, T. Hannappel, H. A. Atwater, H.-J. Lewerenz, ACS Energy Lett. 2018, 3, 1795.
- 27 Y. Wang, J. Schwartz, J. Gim, R. Hovden, Z. Mi, ACS Energy Lett. 2019, 4, 1541.
- 28 A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Marquez, A. B. Morales Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Science 2020, 370, 1300.
- 29 J. Gao, F. Sahli, C. Liu, D. Ren, X. Guo, J. Werner, Q. Jeangros, S. M. Zakeeruddin, C. Ballif, M. Grätzel, J. Luo, Joule 2019, 3, 2930.
- 30 S. Pan, R. Li, Q. Zhang, C. Cui, M. Wang, B. Shi, P. Wang, C. Zhang, B. Zhang, Y. Zhao, X. Zhang, J. Mater. Chem. A 2021, 9, 14085.
- 31 C. G. Morales-Guio, K. Thorwarth, B. Niesen, L. Liardet, J. Patscheider, C. Ballif, X. Hu, J. Am. Chem. Soc. 2015, 137, 7035.
- 32 M. Ben-Naim, R. J. Britto, C. W. Aldridge, R. Mow, M. A. Steiner, A. C. Nielander, L. A. King, D. J. Friedman, T. G. Deutsch, J. L. Young, T. F. Jaramillo, ACS Energy Lett. 2020, 5, 2631.
- 33 A. B. Laursen, T. Pedersen, P. Malacrida, B. Seger, O. Hansen, P. C. Vesborg, I. Chorkendorff, Phys. Chem. Chem. Phys. 2013, 15, 20000.
- 34 R. J. Britto, J. D. Benck, J. L. Young, C. Hahn, T. G. Deutsch, T. F. Jaramillo, J. Phys. Chem. Lett. 2016, 7, 2044.
- 35 X. Xiao, M. Wang, S. Chen, Y. Zhang, H. Gu, Y. Deng, G. Yang, C. Fei, B. Chen, Y. Lin, M. D. Dickey, J. Huang, Sci. Adv. 2021, 7, eabi8249.
- 36 Z. Zhang, F. Zhou, P. Yang, B. Jiang, J. Hu, X. Gao, Y. Zhang, Adv. Opt. Mater. 2020, 8, 2000166.
- 37 R. Siburian, A. M. M. Ali, K. Sebayang, M. Supeno, K. Tarigan, C. Simanjuntak, S. P. Aritonang, F. Hutagalung, Sci. Rep. 2021, 11, 2532.
- 38 D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Copéret, T. J. Schmidt, Chem. Mater. 2016, 28, 6591.
- 39 K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, M. D. McGehee, Nat. Energy 2017, 2, 17009.
- 40 F. Sahli, J. Werner, B. A. Kamino, M. Brauninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Nat. Mater. 2018, 17, 820.
- 41 B. Liu, Z. Jin, L. Bai, J. Liang, Q. Zhang, C. Liu, Y. Zhao, X. Zhang, J. Mater. Chem. A 2015, 3, 15583.
- 42 F. F. Abdi, R. van de Krol, J. Phys. Chem. C 2012, 116, 9398.
- 43 R. Fan, S. Cheng, G. Huang, Y. Wang, Y. Zhang, S. Vanka, G. A. Botton, Z. Mi, M. Shen, J. Mater. Chem. A 2019, 7, 2200.
- 44 F. Njoka, S. Mori, S. Ookawara, M. Ahmed, Int. J. Hydrogen Energy 2019, 44, 10286.
- 45 H. Chen, M. Zhang, T. Tran-Phu, R. Bo, L. Shi, I. Di Bernardo, J. Bing, J. Pan, S. Singh, J. Lipton Duffin, T. Wu, R. Amal, S. Huang, A. W. Y. Ho-Baillie, A. Tricoli, Adv. Funct. Mater. 2021, 31, 2008245.