p-Type Antimony Selenide via Lead Doping
Menglin Huang
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433 China
Search for more papers by this authorShuaicheng Lu
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology (HUST), Wenzhou, Zhejiang, 325035 China
Search for more papers by this authorKanghua Li
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Search for more papers by this authorYue Lu
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Chao Chen
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Jiang Tang
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology (HUST), Wenzhou, Zhejiang, 325035 China
Search for more papers by this authorCorresponding Author
Shiyou Chen
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433 China
Shanghai Qi Zhi Institute, Shanghai, 200232 China
Search for more papers by this authorMenglin Huang
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433 China
Search for more papers by this authorShuaicheng Lu
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology (HUST), Wenzhou, Zhejiang, 325035 China
Search for more papers by this authorKanghua Li
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Search for more papers by this authorYue Lu
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Chao Chen
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Jiang Tang
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074 China
Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology (HUST), Wenzhou, Zhejiang, 325035 China
Search for more papers by this authorCorresponding Author
Shiyou Chen
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433 China
Shanghai Qi Zhi Institute, Shanghai, 200232 China
Search for more papers by this authorAbstract
p-type doping in antimony selenide (Sb2Se3) is an important issue to improve its photovoltaic performance, because the as-grown Sb2Se3 usually shows weak p-type conductivity and leads to low open-circuit voltage. However, no effective p-type doping strategy has been reported so far. Herein, combining theoretical calculation and experiment, it is demonstrated that lead doping can effectively enhance the p-type conductivity because of the low formation energy of the substitutional acceptor PbSb with a (–/0) transition level of 0.15 eV. This is further validated by a conductivity measurement that observes a shallow acceptor level. As a result, a free hole carrier density as high as 1016 cm−3 is achieved for the first time. Furthermore, theoretical analysis on defect densities related to experimentally characterized device performances after Pb doping is presented. The study provides a new p-type doping strategy as well as the implicit defect physics, which can be useful for further improvement of Sb2Se3 solar cells.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202100730-sup-0001-SuppData-S1.pdf793.6 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. Birkett, W. M. Linhart, J. Stoner, L. J. Phillips, K. Durose, J. Alaria, J. D. Major, R. Kudrawiec, T. D. Veal, APL Mater. 2018, 6, 084901.
- 2 C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, J. Tang, Appl. Phys. Lett. 2015, 107, 043905.
- 3 Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, J. Tang, Adv. Energy Mater. 2014, 4, 1301846.
- 4 T. M. Razykov, A. X. Shukurov, O. K. Atabayev, K. M. Kuchkarov, B. Ergashev, A. A. Mavlonov, Sol. Energy 2018, 173, 225.
- 5 S. Lu, C. Chen, J. Tang, Front. Optoelectron. 2020, 13, 246.
- 6 X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.-J. Xue, L. Lv, H. Huang, D. Niu, J. Tang, ACS Appl. Mater. Interfaces 2014, 6, 10687.
- 7 X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, J. Zhang, G. Niu, J. Tang, Nat. Commun. 2018, 9, 2179.
- 8 A. Shongalova, M. R. Correia, J. P. Teixeira, J. P. Leitao, J. C. Gonzalez, S. Ranjbar, S. Garud, B. Vermang, J. M. V. Cunha, P. M. P. Salome, P. A. Fernandes, Sol. Energy Mater. Sol. Cells 2018, 187, 219.
- 9 X. Liu, X. Xiao, Y. Yang, D.-J. Xue, D.-B. Li, C. Chen, S. Lu, L. Gao, Y. He, M. C. Beard, G. Wang, S. Chen, J. Tang, Prog. Photovolt.: Res. Appl. 2017, 25, 861.
- 10 M. Leng, M. Luo, C. Chen, S. Qin, J. Chen, J. Zhong, J. Tang, Appl. Phys. Lett. 2014, 105, 083905.
- 11 Z. Li, X. Chen, H. Zhu, J. Chen, Y. Guo, C. Zhang, W. Zhang, X. Niu, Y. Mai, Sol. Energy Mater. Sol. Cells 2017, 161, 190.
- 12 R. Tang, Z.-H. Zheng, Z.-H. Su, X.-J. Li, Y.-D. Wei, X.-H. Zhang, Y.-Q. Fu, J.-T. Luo, P. Fan, G.-X. Liang, Nano Energy 2019, 64, 103929.
- 13 Y.-D. Luo, R. Tang, S. Chen, J.-G. Hu, Y.-K. Liu, Y.-F. Li, X.-S. Liu, Z.-H. Zheng, Z.-H. Su, X.-F. Ma, P. Fan, X.-H. Zhang, H.-L. Ma, Z.-G. Chen, G.-X. Liang, Chem. Eng. J. 2020, 393, 124599.
- 14 Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, J. Tang, Nat. Photonics 2015, 9, 409.
- 15 Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R. E. I. Schropp, Y. Mai, Nat. Commun. 2019, 10, 125.
- 16 X. Liang, C. Guo, T. Liu, Y. Liu, L. Yang, D. Song, K. Shen, R. E. I. Schropp, Z. Li, Y. Mai, Sol. RRL 2020, 4, 2000294.
- 17 G. Li, Z. Li, X. Liang, C. Guo, K. Shen, Y. Mai, ACS Appl. Mater. Interfaces 2019, 11, 828.
- 18 C. Chen, L. Wang, L. Gao, D. Nam, D. Li, K. Li, Y. Zhao, C. Ge, H. Cheong, H. Liu, H. Song, J. Tang, ACS Energy Lett. 2017, 2, 2125.
- 19 C. Chen, J. Tang, ACS Energy Lett. 2020, 5, 2294.
- 20 M. Huang, P. Xu, D. Han, J. Tang, S. Chen, ACS Appl. Mater. Interfaces 2019, 11, 15564.
- 21 Christopher N. Savory, D. O. Scanlon, J. Mater. Chem. A 2019, 7, 10739.
- 22 M. Huang, Z. Cai, S. Wang, X.-G. Gong, S.-H. Wei, S. Chen, Small 2021, 17, 2102429.
- 23 C. Yuan, L. Zhang, W. Liu, C. Zhu, Sol. Energy 2016, 137, 256.
- 24 A. W. Welch, L. L. Baranowski, P. Zawadzki, S. Lany, C. A. Wolden, A. Zakutayev, Appl. Phys. Express 2015, 8, 082301.
- 25 M. Zhang, C. Wang, C. Chen, J. Tang, Front. Optoelectron. 2020, 1.
- 26 R. Adhi Wibowo, E. Soo Lee, B. Munir, K. Ho Kim, Phys. Status Solidi A 2007, 204, 3373.
- 27 Y. Zhou, Y. Li, J. Luo, D. Li, X. Liu, C. Chen, H. Song, J. Ma, D.-J. Xue, B. Yang, J. Tang, Appl. Phys. Lett. 2017, 111, 013901.
- 28 P. R. Pudasaini, A. Oyedele, C. Zhang, M. G. Stanford, N. Cross, A. T. Wong, A. N. Hoffman, K. Xiao, G. Duscher, D. G. Mandrus, T. Z. Ward, P. D. Rack, Nano Research 2018, 11, 722.
- 29 Y. Li, Y. Zhou, Y. Zhu, C. Chen, J. Luo, J. Ma, B. Yang, X. Wang, Z. Xia, J. Tang, Appl. Phys. Lett. 2016, 109, 232104.
- 30 S. Chen, Z. Zheng, M. Cathelinaud, H. Ma, X. Qiao, Z. Su, P. Fan, G. Liang, X. Fan, X. Zhang, Sol. Energy Mater. Sol. Cells 2019, 203, 110154.
- 31 T. D. C. Hobson, L. J. Phillips, O. S. Hutter, H. Shiel, J. E. N. Swallow, C. N. Savory, P. K. Nayak, S. Mariotti, B. Das, L. Bowen, L. A. H. Jones, T. J. Featherstone, M. J. Smiles, M. A. Farnworth, G. Zoppi, P. K. Thakur, T.-L. Lee, H. J. Snaith, C. Leighton, D. O. Scanlon, V. R. Dhanak, K. Durose, T. D. Veal, J. D. Major, Chem. Mater. 2020, 32, 2621.
- 32 M.-H. Du, J. Phys. Chem. Lett. 2015, 6, 1461.
- 33 S. G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A. J. Barker, F. De Angelis, A. Petrozza, Adv. Mater. 2019, 31, 1901183.
- 34 D. Khokhlov, Lead Chalcogenides: Physics and Applications, Taylor & Francis, New York 2002.
- 35 J. A. Dean, Lange's Handbook of Chemistry, McGraw-Hill, New York 1999.
- 36 C. Chen, D. C. Bobela, Y. Yang, S. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M. C. Beard, J. Tang, Front. Optoelectron. 2017, 10, 18.
- 37 N. Cifuentes, S. Ghosh, A. Shongolova, M. R. Correia, P. M. P. Salomé, P. A. Fernandes, S. Ranjbar, S. Garud, B. Vermang, G. M. Ribeiro, J. C. González, J. Phys. Chem. C 2020, 124, 7677.
- 38 Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, Y.-H. Zhang, Nat. Energy 2016, 1, 16067.
- 39 W. K. Metzger, S. Grover, D. Lu, E. Colegrove, J. Moseley, C. L. Perkins, X. Li, R. Mallick, W. Zhang, R. Malik, J. Kephart, C. S. Jiang, D. Kuciauskas, D. S. Albin, M. M. Al-Jassim, G. Xiong, M. Gloeckler, Nat. Energy 2019, 4, 837.
- 40
R. Scheer, H. W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, Wiley-VCH, Weinheim, Baden-Württemberg, Germany 2011.
10.1002/9783527633708 Google Scholar
- 41 W. Sun, A. Holder, B. Orvañanos, E. Arca, A. Zakutayev, S. Lany, G. Ceder, Chem. Mater. 2017, 29, 6936.
- 42 G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 43 J. Heyd, G. E. Scuseria, J. Chem. Phys. 2004, 121, 1187.
- 44 C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C. G. Van de Walle, Rev. Mod. Phys. 2014, 86, 253.
- 45 S. Lany, A. Zunger, Phys. Rev. B 2008, 78, 235104.
- 46 M. Huang, S.-S. Wang, Y.-N. Wu, S. Chen, Phys. Rev. Appl. 2021, 15, 024035.
- 47 X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, J. Zhang, G. Niu, J. Tang, Nat. Commun. 2018, 9, 2179.
- 48 S. Lu, Y. Zhao, X. Wen, D. J. Xue, C. Chen, K. Li, R. Kondrotas, C. Wang, J. Tang, Sol. RRL 2019, 3, 1800280.