Enhanced Non-Invasive Radio Frequency Heating Using 2D Pyrite (Pyritene)
Karthik Rajeev
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
Search for more papers by this authorBruno Ipaves
Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580 Brazil
Applied Physics Department, State University of Campinas (UNICAMP), Campinas, SP, 13083-872 Brazil
Search for more papers by this authorCaique Campos de Oliveira
Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580 Brazil
Search for more papers by this authorCorresponding Author
Sreeram Punathil Raman
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSwastik Kar
Department of Physics, Northeastern University, Boston, MA, 02115 USA
The Quantum Materials and Sensing Institute, Northeastern University, Burlington, MA, 01803 USA
Department of Chemical Engineering, Northeastern University, Boston, MA, 02115
Search for more papers by this authorDouglas S Galvao
Applied Physics Department, State University of Campinas (UNICAMP), Campinas, SP, 13083-872 Brazil
Center for Computational Engineering & Sciences (CCES), State University of Campinas -UNICAMP, Campinas, SP, 13083-872 Brazil
Search for more papers by this authorCorresponding Author
Pedro Alves da Silva Autreto
Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580 Brazil
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chandra Sekhar Tiwary
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorKarthik Rajeev
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
Search for more papers by this authorBruno Ipaves
Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580 Brazil
Applied Physics Department, State University of Campinas (UNICAMP), Campinas, SP, 13083-872 Brazil
Search for more papers by this authorCaique Campos de Oliveira
Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580 Brazil
Search for more papers by this authorCorresponding Author
Sreeram Punathil Raman
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSwastik Kar
Department of Physics, Northeastern University, Boston, MA, 02115 USA
The Quantum Materials and Sensing Institute, Northeastern University, Burlington, MA, 01803 USA
Department of Chemical Engineering, Northeastern University, Boston, MA, 02115
Search for more papers by this authorDouglas S Galvao
Applied Physics Department, State University of Campinas (UNICAMP), Campinas, SP, 13083-872 Brazil
Center for Computational Engineering & Sciences (CCES), State University of Campinas -UNICAMP, Campinas, SP, 13083-872 Brazil
Search for more papers by this authorCorresponding Author
Pedro Alves da Silva Autreto
Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580 Brazil
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chandra Sekhar Tiwary
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Radiofrequency (RF) heating is a new, less invasive alternative to invasive heating methods that use nanoparticles for tumour therapy. But pinpoint local heating is still hard. Molecular interactions form a hybrid structure with unique electrical characteristics that enable RF heating in this work, which explores RF heating in a biological cell (yeast)-2D FeS2 system. Substantial processes have been uncovered via experimental investigations and density functional theory (DFT) computations. At 3 W and 50 MHz, RF heating reaches 54°C in 40 s, which is enough to kill yeast cells, while current-voltage measurements reveal ionic diode-like properties. Interactions between yeast lipid molecules and 2D FeSk, as shown by density-functional theory calculations, cause an imbalance in the distribution of charges and the creation of polar, conductive channels. Insights into biological heating applications based on radio frequency (RF) technology are offered by this work, which lays forth a framework for investigating 2D material-biomolecule interactions.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202402066-sup-0001-SuppMat.docx1.8 MB | Supporting Information |
smtd202402066-sup-0002-VideoS1.mp439.9 MB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Pan, L. Liu, L. Rao, X. Chen, Matter. 2022, 5, 1367.
- 2A. M. Gobin, E. M. Watkins, E. Quevedo, V. L. Colvin, J. L. West, Small. 2010, 6, 745.
- 3E. Schena, P. Saccomandi, Y. Fong, J. Funct. Biomater. 2017, 8, 19.
- 4M. Ahmed, C. L. Brace, F. T. Lee, S. N. Goldberg, Radiology. 2011, 258, 351.
- 5R. R. Letfullin, C. B. Iversen, T. F. George, Nanomedicine. 2011, 7, 137.
- 6M. Zhou, J. Li, S. Liang, A. K. Sood, D. Liang, C. Li, ACS Nano. 2015, 9, 7085.
- 7K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 2012, 24, 1868.
- 8H. Peng, J. Tang, R. Zheng, G. Guo, A. Dong, Y. Wang, W. Yang, Adv. Healthcare Mater. 2017, 6, 1601289.
- 9M. Kettering, J. Winter, M. Zeisberger, S. Bremer-Streck, H. Oehring, C. Bergemann, C. Alexiou, R. Hergt, K. J. Halbhuber, W. A. Kaiser, I. Hilger, Nanotechnology. 2007, 18, 175101.
- 10Z. Ye, Y. Tai, Z. Han, S. Liu, M. L. Etheridge, J. L. Pasek-Allen, C. Shastry, Y. Liu, Z. Li, C. Chen, Z. Wang, J. C. Bischof, J. Nam, Y. Yin, Nano Lett. 2024, 24, 4588.
- 11I. Andreu, E. Natividad, L. Solozábal, O. Roubeau, ACS Nano. 2015, 9, 1408.
- 12P. M. Peiris, L. Bauer, R. Toy, E. Tran, J. Pansky, E. Doolittle, E. Schmidt, E. Hayden, A. Mayer, R. A. Keri, M. A. Griswold, E. Karathanasis, ACS Nano. 2012, 6, 4157.
- 13K. Zhang, P. Li, H. Chen, X. Bo, X. Li, H. Xu, ACS Nano. 2016, 10, 2549.
- 14C. Xu, Y. Yang, W. Gao, Matter. 2020, 2, 1414.
- 15E. De Vita, D. Lo Presti, C. Massaroni, A. Iadicicco, E. Schena, S. Campopiano, iScience. 2023, 26, 108260.
- 16S. J. Corr, M. Raoof, Y. Mackeyev, S. Phounsavath, M. A. Cheney, B. T. Cisneros, M. Shur, M. Gozin, P. J. McNally, L. J. Wilson, S. A. Curley, J. Phys. Chem. C. 2012, 116, 24380.
- 17C. Wang, J. Irudayaraj, Small. 2010, 6, 283.
- 18D. Li, W. Zhang, X. Yu, Z. Wang, Z. Su, G. Wei, Nanoscale. 2016, 8, 19491.
- 19S. H. Chen, D. R. Bell, B. Luan, Adv Drug Deliv Rev 2022, 186, 114336.
- 20H. N. Bhatt, J. Pena-Zacarias, E. Beaven, M. I. Zahid, S. S. Ahmad, R. Diwan, M. Nurunnabi, ACS Appl. Bio Mater. 2023, 6, 365.
- 21M. J. Molaei, J. Drug Deliv. Sci. Technol. 2021, 61, 101830.
- 22W. Wen, Y. Song, X. Yan, C. Zhu, D. Du, S. Wang, A. M. Asiri, Y. Lin, Mater. Today. 2018, 21, 164.
- 23P. Piyasena, C. Dussault, T. Koutchma, H. S. Ramaswamy, G. B. Awuah, Crit. Rev. Food Sci. Nutr. 2003, 43, 587.
- 24C. H. Moran, S. M. Wainerdi, T. K. Cherukuri, C. Kittrell, B. J. Wiley, N. W. Nicholas, S. A. Curley, J. S. Kanzius, P. Cherukuri, Nano Res. 2009, 2, 400.
- 25K. Tamarov, M. Gongalsky, L. Osminkina, Y. Huang, M. Omar, V. Yakunin, V. Ntziachristos, D. Razansky, V. Timoshenko, Phys. Chem. Chem. Phys. 2017, 19, 11510.
- 26J. Cervera, B. Schiedt, R. Neumann, S. Mafé, P. Ramírez, J. Chem. Phys. 2006, 124, 104706.
- 27K. D. Collins, Proc. Natl. Acad. Sci. USA. 1995, 92, 5553.
- 28K. R., A. K. Singh, P. R. Sreeram, P. L. Mahapatra, D. S. Galvao, C. S. Tiwary, Nanoscale. 2023, 15, 9022.
- 29K. R., A. K. Singh, S. Das, S. Sarkar, T. K. Kundu, S. Kar, P. R. Sreeram, C. S. Tiwary, J. Mater. Chem. A Mater. 2024, 12, 8940.
- 30S. J. H. Gaughan, J. D. Hirst, A. K. Croft, C. M. Jäger, J. Chem. Inf. Model. 2022, 62, 591.
- 31A. D. Read, R. E. T. Bentley, S. L. Archer, K. J. Dunham-Snary, Redox Biol. 2021, 47, 102164.
- 32D. Wang, M. Zhang, G. Qiu, C. Rong, X. Zhu, G. Qin, C. Kong, J. Zhou, X. Liang, Z. Bu, J. Liu, T. Luo, J. Yang, K. Zhang, ACS Nano. 2023, 17, 5503.
- 33Q. Liu, W. Zhang, R. Jiao, Z. Lv, X. Lin, Y. Xiao, K. Zhang, Adv. Sci. 2022, 9, 2203921.
- 34Q. Hou, K. Zhang, S. Chen, J. Chen, Y. Zhang, N. Gong, W. Guo, C. Fang, L. Wang, J. Jiang, J. Dou, X. Liang, J. Yu, P. Liang, ACS Nano. 2022, 16, 5704.
- 35Y. Zhang, L. Guo, F. Kong, L. Duan, H. Li, C. Fang, K. Zhang, WIREs Nanomed. Nanobiotechnol. 2021, 13, e1733.
- 36X.-W. Bo, F. Lu, H.-X. Xu, L.-P. Sun, K. Zhang, Front. Oncol. 2020, 10, 580431.
- 37Y. Fang, H.-Y. Li, H.-H. Yin, S.-H. Xu, W.-W. Ren, S.-S. Ding, W.-Z. Tang, L.-H. Xiang, R. Wu, X. Guan, K. Zhang, ACS Appl. Mater. Interfaces. 2019, 11, 11251.
- 38E. Nevoigt, Microbiol.Mol. Biol. Rev. 2008, 72, 379.
- 39K. Natter, S. D. Kohlwein, Mol. Cell Biol. Lipids. 2013, 1831, 314.
- 40D. Botstein, G. R. Fink, Science. 1979, 240, 1439.
10.1126/science.3287619 Google Scholar
- 41C. T. Dameron, R. N. Reese, R. K. Mehra, A. R. Kortan, P. J. Carroll, M. L. Steigerwald, L. E. Brus, D. R. Winge, Nature. 1989, 338, 596.
- 42R. Mahle, S. Suran, A. Singh, P. Kumbhakar, D. S. Galvao, V. R. S. Cheela, B. Dubey, R. R. Nair, C. S. Tiwary, R. Banerjee, ACS Sustainable Chem. Eng. 2024, 12, 11891.
- 43C. Arrouvel, J.-G. Eon, Mater. Res. 2018, 22, 20171140.
10.1590/1980-5373-mr-2017-1140 Google Scholar
- 44M. Staiano, M. Strianese, A. Varriale, S. Di Giovanni, D. Scotto di Mase, V. Dell'Angelo, G. Ruggiero, T. Labella, C. Pellecchia, S. D'Auria, Protein Pept. Lett. 2012, 19, 592.
- 45S. Middya, A. Layek, A. Dey, P. P. Ray, J. Mater. Sci. Technol. 2014, 30, 770.
- 46X. Zhang, X. Zhang, W. He, C. Sun, J. Ma, J. Yuan, X. Du, Colloids Surf. B Biointerfaces. 2013, 103, 114.
- 47H. Kaur, R. Tian, A. Roy, M. McCrystall, D. V. Horvath, G. Lozano Onrubia, R. Smith, M. Ruether, A. Griffin, C. Backes, V. Nicolosi, J. N. Coleman, ACS Nano. 2020, 14, 13418.
- 48G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, D. Petrov, J. Raman Spectrosc. 2006, 37, 858.
- 49S. Chen, B. Bai, X. Xu, N. Hu, H. Wang, Y. Suo, RSC Adv. 2019, 9, 16258.
- 50D. E. Amory, M. J. Genet, P. G. Rouxhet, Surf. Interface Anal. 1988, 11, 478.
- 51L. Li, P. Ma, S. Hussain, L. Jia, D. Lin, X. Yin, Y. Lin, Z. Cheng, L. Wang, Sustain Energy Fuels. 2019, 3, 1749.
- 52Z. Tu, J. Wan, C. Guo, C. Fan, T. Zhang, G. Lu, J. R. Reinfelder, Z. Dang, Electrochim. Acta. 2017, 239, 25.
- 53A. Vashisth, S. T. Upama, M. Anas, J.-H. Oh, N. Patil, M. J. Green, Nanoscale Adv. 2021, 3, 5255.
- 54I. N. Yakovkin, N. V. Petrova, Appl. Surf. Sci. 2016, 377, 184.
- 55H. Qin, J. Jia, L. Lin, H. Ni, M. Wang, L. Meng, Mater. Sci. Eng., B. 2018, 236, 104.
- 56Y. Cui, X. Wang, S. Jiang, S. Wang, L. Hou, Innovative Food Sci. Emerging Technol. 2023, 84, 103280.
- 57L. Yang, Z. Zhou, J. Song, X. Chen, Chem. Soc. Rev. 2019, 48, 5140.
- 58M. S. Islam, A. Aryasomayajula, P. Selvaganapathy, Micromachines. 2017, 8, 83.
- 59L. T. Ciobanu, D. Constantinescu-Aruxandei, I. C. Farcasanu, F. Oancea, Int. J. Mol. Sci. 2024, 25, 12655.
- 60A. Khalid, P. Ahmad, A. I. Alharthi, S. Muhammad, M. U. Khandaker, M. R. Iqbal Faruque, I. U. Din, M. A. Alotaibi, Crystals. 2021, 11, 171.
- 61G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, D. Petrov, J. Raman Spectrosc. 2006, 37, 858.
- 62K. Sugimori, H. Kawabe, H. Nagao, K. Nishikawa, Int. J. Quantum Chem. 2008, 108, 2935.
- 63A. A. Tsukanov, A. V. Pervikov, A. S. Lozhkomoev, Comput. Mater. Sci. 2020, 173, 109396.
- 64E. Donadoni, P. Siani, G. Frigerio, C. Milani, Q. Cui, C. Di Valentin, Nanoscale. 2024, 16, 9108.
- 65K. Tamarov, M. Gongalsky, L. Osminkina, Y. Huang, M. Omar, V. Yakunin, V. Ntziachristos, D. Razansky, V. Timoshenko, Phys. Chem. Chem. Phys. 2017, 19, 11510.
- 66M. Anas, Y. Zhao, M. A. Saed, K. J. Ziegler, M. J. Green, Nanoscale. 2019, 11, 9617.
- 67P. L. Mahapatra, C. Campos de Oliveira, P. R. Sreeram, S. K. Sivaraman, S. Sarkar, G. Costin, B. Lahiri, P. A. da S Autreto, C. S. Tiwary, Chem. Mater. 2023, 35, 8135.