Lego-Inspired Splicing of Modularized Vascular Channels
Xiaoyan Zou
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
School of Nano Science and Technology, University of Science and Technology of China, Suzhou, 215123 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorShilu Zhu
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorYifeng Xia
School of Nano Science and Technology, University of Science and Technology of China, Suzhou, 215123 P. R. China
Search for more papers by this authorJie Gao
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorJiading Chen
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorPeng Yao
School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Min Ye
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuwei Shen
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ronald X. Xu
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiaoyan Zou
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
School of Nano Science and Technology, University of Science and Technology of China, Suzhou, 215123 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorShilu Zhu
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorYifeng Xia
School of Nano Science and Technology, University of Science and Technology of China, Suzhou, 215123 P. R. China
Search for more papers by this authorJie Gao
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorJiading Chen
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorPeng Yao
School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Min Ye
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuwei Shen
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ronald X. Xu
School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Center for Intelligent Medical Equipment and Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Vascular channels embedded within tissue-engineered hydrogels play a crucial role in replicating natural physiological environments and facilitating the delivery of nutrients and removal of metabolic byproducts. Although present techniques provide diverse strategies to create vascular channels, the flexible and scalable construction of these channels within hydrogels remains a challenge. Here, inspired by Lego assembly, an innovative modular construction strategy is introduced for developing perfusable vascular channels within hydrogels. This approach involves the customized design and fabrication of individual modules featuring diverse vascular channel architectures, which can be flexibly assembled into large-scale hydrogel constructs with hierarchical vascular channels through splicing. As a proof of concept, gelatin-based constructs with vascular channels are spliced across multiple dimensions—1D, 2D, and 3D—to validate the flexibility and scalability of the splicing technique. These vascular hydrogel constructs are successfully perfused, and the interfacial strengths of the different spliced constructs are characterized. Furthermore, a functionalized construct capable of mimicking the vascular barrier function of human umbilical vein endothelial cells (HUVECs) is established, and determined arterial endothelial cell integrity and functionality under flow conditions. The innovative splicing technique offers new insights into the construction of large-scale in vitro vascularized tissues, paving the way for addressing specific tissue engineering needs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401928-sup-0001-SuppMat.docx5.9 MB | Supporting Information |
smtd202401928-sup-0002-VideoS1.mp412.9 MB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Y. Shen, J. Wang, G. F. Li, S. Y. Hao, Y. Wu, P. R. Song, Y. F. Han, M. M. Li, G. C. Wang, K. Xu, H. Zhang, X. X. Ren, Y. Y. Jing, R. Yang, Z. Geng, J. C. Su, Bioact. Mater. 2024, 35, 429.
- 2S. Gkouma, N. Bhalla, S. Frapard, A. Jönsson, H. Gürbüz, A. A. Dogan, S. Giacomello, M. Duvfa, P. L. Ståhl, M. Widhe, M. Hedhammar, Biofabrication 2024, 17, 015015.
10.1088/1758-5090/ad8b72 Google Scholar
- 3E. M. Hia, I. W. Suh, S. R. Jang, C. H. Park, Carbohydr. Polym. 2024, 346, 122666.
- 4J. Chen, Q. Li, H. Li, C. Lv, H. Yu, Q. Feng, H. Dong, Bioact. Mater. 2025, 44, 220.
- 5D. W. McMillin, J. M. Negri, C. S. Mitsiades, Nat. Rev. Drug Discovery 2013, 12, 217.
- 6S. D. Lundy, J. A. Gantz, C. M. Pagan, D. Filice, M. A. Laflamme, Curr. Treat. Options Cardiovasc. Med. 2014, 16, 319.
- 7X. Y. Ma, J. Liu, W. Zhu, M. Tang, N. Lawrence, C. Yu, M. L. Gou, S. C. Chen, Adv. Drug Del. Rev. 2018, 132, 235.
- 8D. Y. No, K. H. Lee, J. Lee, S. H. Lee, Lab Chip 2015, 15, 3822.
- 9G. Li, F. Gao, D. Yang, L. Lin, W. Yu, J. Tang, R. Yang, M. Jin, Y. Gu, P. Wang, E. Lu, Bioact. Mater. 2024, 42, 241.
- 10P. Mehta, M. Sharma, M. Devi, J. Mech. Behav. Biomed. Mater. 2023, 147, 106145.
- 11E. Trimm, K. Red-Horse, Nat. Rev. Cardiol. 2023, 20, 197.
- 12R. Xie, W. Zheng, L. Guan, Y. Ai, Q. Liang, Small 2020, 16, 1902838.
- 13N. W. Choi, M. Cabodi, B. Held, J. P. Gleghorn, L. J. Bonassar, A. D. Stroock, Nat. Mater. 2007, 6, 908.
- 14N. Mori, Y. Morimoto, S. Takeuchi, Biomaterials 2017, 116, 48.
- 15N. Brandenberg, M. P. Lutolf, Adv. Mater. 2016, 28, 7450.
- 16C. K. Arakawa, B. A. Badeau, Y. Zheng, C. A. DeForest, Adv. Mater. 2017, 29, 1703156.
- 17K. A. Heintz, M. E. Bregenzer, J. L. Mantle, K. H. Lee, J. L. West, J. H. Slater, Adv. Healthcare Mater. 2016, 5, 2153.
- 18A. Schwab, R. Levato, M. D'Este, S. Piluso, D. Eglin, J. Malda, Chem. Rev. 2020, 120, 11028.
- 19A. Fatimi, O. V. Okoro, D. Podstawczyk, J. Siminska-Stanny, A. Shavandi, Gels 2022, 8, 179.
- 20H. Budharaju, D. Sundaramurthi, S. Sethuraman, Bioact. Mater. 2024, 32, 356.
- 21D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, J. A. Lewis, Proc. Natl. Acad. Sci. USA 2016, 113, 3179.
- 22Y. Qiu, B. Ahn, Y. Sakurai, C. E. Hansen, R. Tran, P. N. Mimche, R. G. Mannino, J. C. Ciciliano, T. J. Lamb, C. H. Joiner, S. F. Ofori-Acquah, W. A. Lam, Nat. Biomed. Eng. 2018, 2, 453.
- 23W. F. Hynes, M. Pepona, C. Robertson, J. Alvarado, K. Dubbin, M. Triplett, J. J. Adorno, A. Randles, M. L. Moya, Sci. Adv. 2020, 6, abb3308.
- 24C. O'Connor, E. Brady, Y. Zheng, E. Moore, K. R. Stevens, Nat. Rev. Mater. 2022, 7, 702.
- 25Y. Yajima, M. Yamada, E. Yamada, M. Iwase, M. Seki, Biomicrofluidics 2014, 8, 024115.
- 26J. He, R. Chen, Y. Lu, L. Zhan, Y. Liu, D. Li, Z. Jin, Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 53.
- 27H.-W. Kang, S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, A. Atala, Nat. Biotechnol. 2016, 34, 312.
- 28D. J. Lorang, D. Tanaka, C. M. Spadaccini, K. A. Rose, N. J. Cherepy, J. A. Lewis, Adv. Mater. 2011, 23, 5055.
- 29A. Kotikian, J. M. Morales, A. Lu, J. Mueller, Z. S. Davidson, J. W. Boley, J. A. Lewis, Adv. Mater. 2021, 33, 2101814.
- 30D. Wang, S. Maharjan, X. Kuang, Z. Wang, L. S. Mille, M. Tao, P. Yu, X. Cao, L. Lian, L. Lv, J. J. He, G. Tang, H. Yuk, C. K. Ozaki, X. Zhao, Y. S. Zhang, Sci. Adv. 2022, 8, abq6900.
- 31W. Wu, A. DeConinck, J. A. Lewis, Adv. Mater. 2011, 23, H178.
- 32A. Wierzbicka, M. Bartniak, J. Wasko, B. Kolesinska, J. Grabarczyk, D. Bociaga, Gels 2024, 10, 491.
- 33J. Simińska-Stanny, L. Nicolas, A. Chafai, H. Jafari, M. Hajiabbas, G. Dodi, I. Gardikiotis, C. Delporte, L. Nie, D. Podstawczyk, A. Shavandi, Bioact. Mater. 2024, 36, 168.
- 34Y.-C. Chen, R.-Z. Lin, H. Qi, Y. Yang, H. Bae, J. M. Melero-Martin, A. Khademhosseini, Adv. Funct. Mater. 2012, 22, 2027.
- 35K. Jiao, H. Liu, T. Zhang, X. Li, X. Cheng, G. Zhao, G. Zheng, Int. J. Biol. Macromol. 2024, 280, 136076.
- 36E. Rama, S. R. Mohapatra, Y. Sugimura, T. Suzuki, S. Siebert, R. Barmin, J. Hermann, J. Baier, A. Rix, T. Lemainque, S. Koletnik, A. S. Elshafei, R. M. Pallares, S. M. Dadfar, R. H. Tolba, V. Schulz, J. Jankowski, C. Apel, P. Akhyari, S. Jockenhoevel, F. Kiessling, Biomaterials 2024, 311, 122669.
- 37K. Zampouni, C. K. Mouzakitis, A. Lazaridou, T. Moschakis, E. Katsanidis, Food Hydrocoll. 2023, 140, 108636.
- 38F. J. O'Brien, Mater. Today 2011, 14, 88.
- 39M. Rasoulianboroujeni, N. Kiaie, F. S. Tabatabaei, A. Yadegari, F. Fahimipour, K. Khoshroo, L. Tayebi, Sci. Rep. 2018, 8, 14889.
- 40M. Lee, S. Park, B. Choi, W. Choi, H. Lee, J. M. Lee, S. T. Lee, K. H. Yoo, D. Han, G. Bang, H. Hwang, W.-G. Koh, S. Lee, J. Hong, Nat. Commun. 2024, 15, 77.
- 41W.-L. Lei, C.-W. Peng, S.-C. Chiu, H.-E. Lu, C.-W. Wu, T.-Y. Cheng, W.-C. Huang, Adv. Funct. Mater. 2024, 34, 2307365.
- 42E. A. Margolis, N. E. Friend, M. W. Rolle, E. Alsberg, A. J. Putnam, Trends Biotechnol. 2023, 41, 1400.
- 43Z. Y. Wang, S. M. Mithieux, A. Weiss, Adv. Healthcare Mater. 2019, 8, 1900742.
- 44T. W. Chittenden, F. Claes, A. A. Lanahan, M. Autiero, R. T. Palac, E. V. Tkachenko, A. Elfenbein, C. R. de Almodovar, E. Dedkov, R. Tomanek, W. M. Li, M. Westmore, J. Singh, A. Horowitz, M. J. Mulligan-Kehoe, K. L. Moodie, Z. W. Zhuang, P. Carmeliet, M. Simons, Dev. Cell 2006, 10, 783.
- 45A. K. Miri, A. Khalilpour, B. Cecen, S. Maharjan, S. R. Shin, A. Khademhosseini, Biomaterials 2019, 198, 204.
- 46H. G. Augustin, G. Y. Koh, Cell 2024, 187, 4833.
- 47G. Palmara, F. Frascella, I. Roppolo, A. Chiappone, A. Chiadò, Biosens. Bioelectron. 2021, 175, 112849.
- 48N. Liu, X. P. Zhang, Q. X. Guo, T. Wu, Y. F. Wang, Front. Mater. 2022, 9, 925321.
- 49J. H. Jiang, C. H. Yuan, X. Y. Zhang, L. Gu, Y. D. Yao, X. P. Wang, Y. He, L. Shao, Adv. Mater. 2024, 36, 2412127.
- 50X. G. Wang, R. K. June, D. M. Pierce, J. Mech. Behav. Biomed. Mater. 2021, 114, 104150.
- 51X. Wang, X. Yang, Z. Liu, Z. Shen, M. Li, R. Cheng, L. Zhao, Y. Xi, J. Wang, S. Sang, Acta Biomater. 2024, 185, 173.
- 52A. Lammers, H. H. Hsu, S. Sundaram, K. A. Gagnon, S. Kim, J. H. Lee, Y. C. Tung, J. Eyckmans, C. S. Chen, Matter 2024, 7, 2184.
- 53J. Zhang, S. Suttapreyasri, C. Leethanakul, B. Samruajbenjakun, J. Biomed. Mater. Res., Part A 2024, 112, 1093.