Versatile and Fast Electrochemical Activation Method for Carbon Nanotube Fibers with Diverse Active Materials
Sungju Lee
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
Search for more papers by this authorHayoung Yu
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
Search for more papers by this authorMin Gook Han
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
Department of Environmental Engineering, Chungbuk National University, Chungae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644 South Korea
Search for more papers by this authorHyewon Jung
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeon-ro, Mapo-gu, Seoul, 04107 South Korea
Search for more papers by this authorCorresponding Author
Hee-Tae Jung
Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Seung Min Kim
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hyeon Su Jeong
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSungju Lee
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
Search for more papers by this authorHayoung Yu
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
Search for more papers by this authorMin Gook Han
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
Department of Environmental Engineering, Chungbuk National University, Chungae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644 South Korea
Search for more papers by this authorHyewon Jung
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeon-ro, Mapo-gu, Seoul, 04107 South Korea
Search for more papers by this authorCorresponding Author
Hee-Tae Jung
Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Seung Min Kim
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hyeon Su Jeong
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
In this study, the challenge of non-electrochemical activity in carbon nanotube fibers (CNTFs) is addressed by developing a modified chlorosulfonic acid (CSA) densification process specifically developed for directly spun CNTFs. This post-treatment method, well-known for enhancing the physical properties of CNTFs, utilizes the double diffusion phenomenon to efficiently integrate a diverse range of active materials, from conductive polymers like polyaniline (PANI) to metal oxides like nickel oxide (NiO), into the fibers. This universal and cost-effective approach not only simplifies the integration process but also significantly boosts both the electrochemical and physical properties of the fibers. For instance, the PANI@CNTF composite exhibited a remarkable 17-fold increase in specific capacitance and a two-fold increase in load value compared to its pristine counterparts. This method proves straightforward, efficient, and versatile, making it suitable for developing fiber-shaped electrodes that advance the capabilities of wearable energy storage systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401478-sup-0001-SuppMat.docx3.1 MB | Supporting Information |
smtd202401478-sup-0002-VideoS1.avi2.4 MB | Supplemental Video 1 |
smtd202401478-sup-0003-VideoS2.avi14.3 MB | Supplemental Video 2 |
smtd202401478-sup-0004-VideoS3.avi5.1 MB | Supplemental Video 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zhang, W. Lu, G. Zhou, Q. Li, Adv. Mater. 2020, 32, 1902028.
- 2Y. Jang, S. M. Kim, G. M. Spinks, S. J. Kim, Adv. Mater. 2020, 32, 1902670.
- 3P. Dariyal, A. K. Arya, B. P. Singh, S. R. Dhakate, J. Mater. Sci. 2021, 56, 1087.
- 4K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, Science. 2007, 318, 1892.
- 5N. T. Alvarez, T. Ochmann, N. Kienzle, B. Ruff, M. R. Haase, T. Hopkins, S. Pixley, D. Mast, M. J. Schulz, V. Shanov, Nanomaterials. 2014, 4, 879.
- 6N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang, A. W. K. Ma, E. A. Bengio, R. F. ter Waarbeek, J. J. de Jong, R. E. Hoogerwerf, S. B. Fairchild, J. B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M. J. Otto, M. Pasquali, Science. 2013, 339, 182.
- 7Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie, F. Xu, J. Zhu, W. Huang, Adv. Mater. 2024, 36, 2310613.
- 8J. Ma, H. Fan, Z. Li, Y. Jia, A. K. Yadav, G. Dong, W. Wang, W. Dong, S. Wang, Sens. Actuators B: Chem. 2021, 334, 129677.
- 9S.-Y. Cho, H. Yu, J. Choi, H. Kang, S. Park, J.-S. Jang, H.-J. Hong, I.-D. Kim, S.-K. Lee, H. S. Jeong, H.-T. Jung, ACS Nano. 2019, 13, 9332.
- 10V. Mottaghitalab, B. Xi, G. M. Spinks, G. G. Wallace, Synth. Met. 2006, 156, 796.
- 11C. Xu, S. Yang, P. Li, H. Wang, H. Li, Z. Liu, Compos. Commun. 2022, 32, 101179.
- 12H. Li, Y. Liu, S. Liu, P. Li, C. Zhang, C. He, Compos. -A: Appl. Sci. Manuf. 2023, 166, 107386.
- 13J. M. Lee, C. Choi, J. H. Kim, M. J. de Andrade, R. H. Baughman, S. J. Kim, Sci. Rep. 2018, 8, 11150.
- 14Z. Lu, Y. Chao, Y. Ge, J. Foroughi, Y. Zhao, C. Wang, H. Long, G. G. Wallace, Nanoscale 2017, 9, 5063.
- 15M. Rana, N. Boaretto, A. Mikhalchan, M. Vila Santos, R. Marcilla, J. J. Vilatela, ACS Appl. Energy Mater. 2021, 4, 5668.
- 16J.-G. Kim, H. Yu, J. Y. Jung, M. J. Kim, D.-Y. Jeon, H. S. Jeong, N. D. Kim, Adv. Funct. Mater. 2022, 32, 2113057.
- 17S. Lee, J.-G. Kim, H. Yu, D.-M. Lee, S. Hong, S. M. Kim, S.-J. Choi, N. D. Kim, H. S. Jeong, Chem. Eng. J. 2023, 453, 139974.
- 18H. Yu, J.-G. Kim, D.-M. Lee, S. Lee, M. G. Han, J.-W. Park, S. M. Kim, N. D. Kim, H. S. Jeong, Adv. Energy Mater. 2024, 14, 2303003.
- 19P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, ACS Nano. 2017, 11, 444.
- 20Q. Zhang, Z. Zhou, Z. Pan, J. Sun, B. He, Q. Li, T. Zhang, J. Zhao, L. Tang, Z. Zhang, L. Wei, Y. Yao, Adv. Sci. 2018, 5, 1801462.
- 21N. Boaretto, M. Rana, R. Marcilla, J. J. Vilatela, ACS Appl. Energy Mater. 2020, 3, 8695.
- 22E. Senokos, V. Reguero, L. Cabana, J. Palma, R. Marcilla, J. J. Vilatela, Adv. Mater. Technol. 2017, 2, 1600290.
- 23J.-H. Liu, X.-Y. Xu, W. Lu, X. Xiong, X. Ouyang, C. Zhao, F. Wang, S.-Y. Qin, J.-L. Hong, J.-N. Tang, D.-Z. Chen, Electrochim. Acta. 2018, 283, 366.
- 24S. N. Kanakaraj, Y.-Y. Hsieh, P. K. Adusei, B. Homan, Y. Fang, G. Zhang, S. Mishra, S. Gbordzoe, V. Shanov, Carbon. 2019, 149, 407.
- 25Z. Zhou, Q. Zhang, J. Sun, B. He, J. Guo, Q. Li, C. Li, L. Xie, Y. Yao, ACS Nano 2018, 12, 9333.
- 26H. Chen, L. Li, L. Wang, F. Li, J. Wang, Y. Jiao, Y. Zhang, Adv. Mater. Technol. 2023, 8, 2301217.
- 27W. G. Chong, J.-Q. Huang, Z.-L. Xu, X. Qin, X. Wang, J.-K. Kim, Adv. Funct. Mater. 2017, 27, 1604815.
- 28T. Zheng, X. Zhang, Y. Li, Y. Zhu, W. Yan, Z. Zhao, L. Zhang, C. Bai, X. Wang, Mater. Lett. 2023, 336, 133891.
- 29Y. W. Na, J. Y. Cheon, J. H. Kim, Y. Jung, K. Lee, J. S. Park, J. Y. Park, K. S. Song, S. B. Lee, T. Kim, S. J. Yang, Sci. Adv. 2022, 8, eabl8631.
- 30Y. Zhu, H. Yue, M. J. Aslam, Y. Bai, Z. Zhu, F. Wei, Nanomaterials. 2022, 12, 3478.
- 31J. Lee, T. Kim, Y. Jung, K. Jung, J. Park, D.-M. Lee, H. S. Jeong, J. Y. Hwang, C. R. Park, K.-H. Lee, S. M. Kim, Nanoscale. 2016, 8, 18972.
- 32D.-M. Lee, J. Park, J. Lee, S.-H. Lee, S.-H. Kim, S. M. Kim, H. S. Jeong, Carbon. 2021, 172, 733.
- 33Y.-L. Li, I. A. Kinloch, A. H. Windle, Science. 2004, 304, 276.
- 34T. Q. Tran, Z. Fan, A. Mikhalchan, P. Liu, H. M. Duong, ACS Appl. Mater. Interfaces. 2016, 8, 7948.
- 35J. Lee, D.-M. Lee, Y. Jung, J. Park, H. S. Lee, Y.-K. Kim, C. R. Park, H. S. Jeong, S. M. Kim, Nat. Commun. 2019, 10, 2962.
- 36X. Zhang, X. Lei, X. Jia, T. Sun, J. Luo, S. Xu, L. Li, D. Yan, Y. Shao, Z. Yong, Y. Zhang, X. Wu, E. Gao, M. Jian, J. Zhang, Science. 2024, 384, 1318.
- 37X. Zhang, M. De Volder, W. Zhou, L. Issman, X. Wei, A. Kaniyoor, J. Terrones Portas, F. Smail, Z. Wang, Y. Wang, H. Liu, W. Zhou, J. Elliott, S. Xie, A. Boies, Sci. Adv. 2022, 8, eabq3515.
- 38A. N. G. Parra-Vasquez, N. Behabtu, M. J. Green, C. L. Pint, C. C. Young, J. Schmidt, E. Kesselman, A. Goyal, P. M. Ajayan, Y. Cohen, Y. Talmon, R. H. Hauge, M. Pasquali, ACS Nano. 2010, 4, 3969.
- 39S. Ramesh, L. M. Ericson, V. A. Davis, R. K. Saini, C. Kittrell, M. Pasquali, W. E. Billups, W. W. Adams, R. H. Hauge, R. E. Smalley, J. Phys. Chem. B. 2004, 108, 8794.
- 40J. Chen, C.-G. Wang, X.-G. Dong, H.-Z. Liu, J. Polym. Res. 2006, 13, 515.
- 41J. Im, Y. H. Jeong, M. C. Kim, D. Oh, J. Son, K. Hyun, B. Jeong, S. Hong, J. Lee, Carbon. 2024, 216, 118532.
- 42A. P. Merkle, J. Gelb, Microsc. Today. 2013, 21, 10.
- 43H.-J. Hong, J. S. Lim, J. Y. Hwang, M. Kim, H. S. Jeong, M. S. Park, Carbohydr. Polym. 2018, 195, 136.
- 44W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, X. Li, Sci. Rep. 2017, 7, 5220.
- 45X. Tao, S. Ye, K. Zhu, L. Dou, P. Cui, J. Ma, C. Zhao, X. Wei, L. Guo, A. Hojjati-Najafabadi, P. Feng, ACS Appl. Energy Mater. 2023, 6, 8177.
- 46T.-M. Wu, Y.-W. Lin, C.-S. Liao, Carbon. 2005, 43, 734.
- 47Z. Chen, X. Wang, Z. Ding, Q. Wei, Z. Wang, X. Yang, J. Qiu, ChemSusChem. 2019, 12, 5099.
- 48J. Zhuo, Y. Zheng, S. Li, J. Sha, ACS Appl. Energy Mater. 2022, 5, 13627.
- 49M. Urso, G. Torrisi, S. Boninelli, C. Bongiorno, F. Priolo, S. Mirabella, Sci. Rep. 2019, 9, 7736.
- 50Z. Zhou, T. Liu, A. U. Khan, G. Liu, Sci. Adv. 2019, 5, eaau6852.
- 51N. Zhang, R. Li, H. Ding, H. Dong, P. Wang, J. Wang, D. Zhao, S. Li, Ionics. 2022, 28, 3571.
- 52J.-G. Kim, D.-M. Lee, J. Y. Jung, M. J. Kim, M.-S. Khil, H. S. Jeong, N. D. Kim, ACS Appl. Energy Mater. 2021, 4, 1130.
- 53S. K. Simotwo, C. DelRe, V. Kalra, ACS Appl. Mater. Interfaces. 2016, 8, 21261.
- 54Z. Zhou, X.-F. Wu, H. Hou, RSC Adv. 2014, 4, 23622.
- 55J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources. 2010, 195, 3041.
- 56D. Ge, L. Yang, L. Fan, C. Zhang, X. Xiao, Y. Gogotsi, S. Yang, Nano Energy. 2015, 11, 568.
- 57Y. Li, Y. Fang, H. Liu, X. Wu, Y. Lu, Nanoscale. 2012, 4, 2867.