Protein Electronic Energy Transport Levels Derived from High-Sensitivity Near-UV and Constant Final State Yield Photoemission Spectroscopy
Corresponding Author
Jerry A Fereiro
School of Chemistry, Indian Inst. of Science Education & Research, Thiruvananthapuram, Kerala, 695551 India
Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001 Israel
E-mail: [email protected]; [email protected]
Search for more papers by this authorMasaki Tomita
Graduate School of Science and Engineering, Chiba University, Chiba, 263–8522 Japan
Search for more papers by this authorTatyana Bendikov
Department of Chemical Research Support, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorSudipta Bera
Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorIsrael Pecht
Department of Immunology & Regenerative Biology, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorMordechai Sheves
Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorDavid Cahen
Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorCorresponding Author
Hisao Ishii
Graduate School of Science and Engineering, Chiba University, Chiba, 263–8522 Japan
Center for Frontier Science, Chiba University, Chiba, 263–8522 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jerry A Fereiro
School of Chemistry, Indian Inst. of Science Education & Research, Thiruvananthapuram, Kerala, 695551 India
Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001 Israel
E-mail: [email protected]; [email protected]
Search for more papers by this authorMasaki Tomita
Graduate School of Science and Engineering, Chiba University, Chiba, 263–8522 Japan
Search for more papers by this authorTatyana Bendikov
Department of Chemical Research Support, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorSudipta Bera
Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorIsrael Pecht
Department of Immunology & Regenerative Biology, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorMordechai Sheves
Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorDavid Cahen
Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot, 7610001 Israel
Search for more papers by this authorCorresponding Author
Hisao Ishii
Graduate School of Science and Engineering, Chiba University, Chiba, 263–8522 Japan
Center for Frontier Science, Chiba University, Chiba, 263–8522 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Proteins are attractive as functional components in molecular junctions. However, controlling the electronic charge transport via proteins, held between two electrodes, requires information on their frontier orbital energy level alignment relative to the electrodes’ Fermi level (EF), which normally requires studies of UV Photoemission Spectroscopy (UPS) with HeI excitation. Such excitation is problematic for proteins, which can denature under standard measuring conditions. Here high-sensitivity soft UV photoemission spectroscopy (HS-UPS) combined with Constant Final State Yield Spectroscopy (CFS-YS) is used to get this information for electrode/protein contacts. Monolayers of the redox protein Azurin, (Az) and its Apo-form on Au substrates, have HOMO onset energies, obtained from CFS-YS, differ by ≈0.2 eV, showing the crucial role of the Cu redox centre in the electron transport process. It is found that combined HS-UPS/CFS-YS measurements agree with the Photoelectron Yield Spectroscopy (PYS), showing potential of the HS-UPS + CFS-YS as a powerful tool to characterize and map the energetics of a protein-electrode interfaces, which will aid optimizing design of devices with targeted electronic properties, as well as for novel applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401204-sup-0001-SuppMat.pdf705.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Amdursky, D. Marchak, L. Sepunaru, I. Pecht, M. Sheves, D. Cahen, Adv. Mater. 2014, 26, 7142.
- 2D. Cahen, I. Pecht, M. Sheves, J. Phys. Chem. Lett. 2021, 12, 11598.
- 3K. S. Kumar, R. R. Pasula, S. Lim, C. A. Nijhuis, Adv. Mater. 2016, 28, 1824.
- 4H. B. Gray, J. R. Winkler, Chem. Phys. Lett. 2009, 483, 1.
- 5J. R. Winkler, H. B. Gray, T. R. Prytkova, I. V. Kurnikov, D. N. Beratan, From Theor. Appl. 2005, 15.
- 6J. R. Winkler, H. B. Gray, Chem. Rev. 2014, 114, 3369.
- 7O. E. C. Ocampo, P. Gordiichuk, S. Catarci, D. A. Gautier, A. Herrmann, R. C. Chiechi, J. Am. Chem. Soc. 2015, 137, 8419.
- 8S. Bera, J. A. Fereiro, S. K. Saxena, D. Chryssikos, K. Majhi, T. Bendikov, L. Sepunaru, D. Ehre, M. Tornow, I. Pecht, A. Vilan, M. Sheves, D. Cahen, J. Am. Chem. Soc. 2023, 145, 24820.
- 9B. Kayser, J. A. Fereiro, R. Bhattacharyya, S. R. Cohen, A. Vilan, I. Pecht, M. Sheves, D. Cahen, J. Phys. Chem. Lett. 2020, 11, 144.
- 10B. Kayser, J. A. Fereiro, C. L. Guo, S. R. Cohen, M. Sheves, I. Pecht, D. Cahen, Nanoscale 2018, 10, 21712.
- 11J. A. Fereiro, G. Porat, T. Bendikov, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 2018, 140, 13317.
- 12A. Bramanti, P. P. Pompa, G. Maruccio, F. Calabi, V. Arima, R. Cingolani, S. Corni, R. Di Felice, F. De Rienzo, R. Rinaldi, Jpn. J. Appl. Phys. 2005, 44, 6864.
- 13J. A. Fereiro, T. Bendikov, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 2020, 142, 19217.
- 14N. Amdursky, L. Sepunaru, S. Raichlin, I. Pecht, M. Sheves, D. Cahen, Azurin, Advanced Science 2015, 2, 1400026.
- 15M. Ortega, J. G. Vilhena, L. A. Zotti, I. Díez-Pérez, J. C. Cuevas, R. Pérez, Biomolecules 2019, 9, 611.
- 16R. Rinaldi, A. Biasco, G. Maruccio, V. Arima, P. Visconti, R. Cingolani, P. Facci, F. De Rienzo, R. Di Felice, E. Molinari, M. P. Verbeet, G. W. Canters, Appl. Phys. Lett. 2003, 82, 472.
- 17T. Lee, S. U. Kim, J. Min, J. W. Choi, Adv. Mater. 2010, 22, 510.
- 18G. Maruccio, P. Marzo, R. Krahne, A. Passaseo, R. Cingolani, R. Rinaldi, Small 2007, 3, 1184.
- 19J. M. Artes, I. Diez-Perez, P. Gorostiza, Nano Lett. 2012, 12, 2679.
- 20G. Maruccio, A. Biasco, P. Visconti, A. Bramanti, P. P. Pompa, F. Calabi, R. Cingolani, R. Rinaldi, S. Corni, R. Di Felice, E. Molinari, M. P. Verbeet, G. W. Canters, Adv. Mater. 2005, 17, 816.
- 21J. Repp, G. Meyer, S. M. Stojković, A. Gourdon, C. Joachim, Phys. Rev. Lett. 2005, 94, 026803.
- 22J. Kolay, S. Bera, T. Rakshit, R. Mukhopadhyay, Langmuir 2018, 34, 3126.
- 23M. P. Ruiz, A. C. Aragonès, N. Camarero, J. G. Vilhena, M. Ortega, L. A. Zotti, R. Pérez, J. C. Cuevas, P. Gorostiza, I. Díez-Pérez, J. Am. Chem. Soc. 2017, 139, 15337.
- 24T. Sato, H. Kinjo, J. Yamazaki, H. Ishii, Appl. Phys. Express 2017, 10, 011602.
- 25T. Sueyoshi, H. Fukagawa, M. Ono, S. Kera, N. Ueno, Appl. Phys. Lett. 2009, 95, 183303.
- 26I. Levine, K. Shimizu, A. Lomuscio, M. Kulbak, C. Rehermann, A. Zohar, M. Abdi-Jalebi, B. Zhao, S. Siebentritt, F. Zu, N. Koch, A. Kahn, G. Hodes, R. H. Friend, H. Ishii, D. Cahen, J. Phys. Chem. C 2021, 125, 5217.
- 27M. Sebastiani, L. Di Gaspare, G. Capellini, C. Bittencourt, F. Evangelisti, Phys. Rev. Lett. 1995, 75, 3352.
- 28K. Nakano, Y. Kaji, K. Tajima, ACS Appl. Mater. Interfaces 2021, 13, 28574.
- 29D. Menzel, A. Tejada, A. Al-Ashouri, I. Levine, J. A. Guerra, B. Rech, S. Albrecht, L. Korte, ACS Appl. Mater. Interfaces 2021, 13, 43540.
- 30L. Korte, A. Laades, M. Schmidt, J. Non-Cryst. Solids 2006, 352, 1217.
- 31L. Korte, M. Schmidt, J. Non-Cryst. Solids 2008, 354, 2138.
- 32D. Menzel, A. Al-Ashouri, A. Tejada, I. Levine, J. A. Guerra, B. Rech, S. Albrecht, L. Korte, Adv. Energy Mater. 2022, 12, 2201109.
- 33K. Shimizu, H. Tokairin, R. Nakazawa, I. Nakamura, S. Yasuno, K. Ikegami, Y. Yamaguchi, Y. Tanaka, H. Ishii, Appl. Phys. Express 2022, 15, 094002.
- 34R. Nakazawa, A. Matsuzaki, K. Shimizu, I. Nakamura, E. Kawashima, S. Makita, K. Tanaka, S. Yasuno, H. Sato, H. J. J. A. P. Yoshida, J. Appl. Phys. 135, 085301.
- 35R. P. Ambler, M. Wynn, Biochem. J. 1973, 131, 485.
- 36I. Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 2010, 132, 4131.
- 37J. A. Fereiro, X. Yu, I. Pecht, M. Sheves, J. C. Cuevas, D. Cahen, Proc. Natl. Acad. Sci. USA 2018, 115, E4577.
- 38J. A. Fereiro, I. Pecht, M. Sheves, D. Cahen, Small 2021, 17, e2008218.
- 39Y. Hattori, M. Kitamura, Thin Solid Films 2023, 764, 139631.
- 40S. Mukhopadhyay, S. K. Karuppannan, C. Guo, J. A. Fereiro, A. Bergren, V. Mukundan, X. Qiu, O. E. Castañeda Ocampo, X. Chen, R. C. Chiechi, R. McCreery, I. Pecht, M. Sheves, R. R. Pasula, S. Lim, C. A. Nijhuis, A. Vilan, D. Cahen, iScience 2020, 23, 101099.
- 41Y. Yamaguchi, K. Shimizu, A. Matsuzaki, D. Sano, T. Sato, Y. Tanaka, H. Ishii, IEICE Transact. Electron. 2019, E102, 168.
10.1587/transele.2018OMS0008 Google Scholar
- 42E. O. Kane, Phys. Rev. 1962, 127, 131.
- 43Y. Tanaka, K. Ikegami, T. Maruyama, H. Kinjo, H. Ishii, Appl. Phys. Express 2018, 11, 081601.
- 44S. Raccosta, C. Baldacchini, A. R. Bizzarri, S. Cannistraro, Appl. Phys. Lett. 2013, 102, 203704.
- 45J. Kong, S. Yu, Acta Biochim. Biophys. Sin. 2007, 39, 549.
- 46A. Kahn, Mater. Horiz. 2016, 3, 7.
- 47C. Romero-Muniz, M. Ortega, J. G. Vilhena, I. Diez-Perez, J. C. Cuevas, R. Perez, L. A. Zotti, Phys. Chem. Chem. Phys. 2018, 20, 30392.
- 48S. Bera, J. Kolay, P. Pramanik, A. Bhattacharyya, R. Mukhopadhyay, J. Mater. Chem. C 2019, 7, 9038.
- 49W. Li, L. Sepunaru, N. Amdursky, S. R. Cohen, I. Pecht, M. Sheves, D. Cahen, ACS Nano 2012, 6, 10816.
- 50X. Yu, R. Lovrincic, L. Sepunaru, W. Li, A. Vilan, I. Pecht, M. Sheves, D. Cahen, ACS Nano 2015, 9, 9955.
- 51P. Hosseinzadeh, N. M. Marshall, K. N. Chacón, Y. Yu, M. J. Nilges, S. Y. New, S. A. Tashkov, N. J. Blackburn, Y. Lu, Proc. Natl. Acad. Sci. USA 2016, 113, 262.
- 52L. Sepunaru, I. Pecht, M. Sheves, D. Cahen, J. Am. Chem. Soc. 2011, 133, 2421.