High-Power and Long-Lifespan Rechargeable Ion Batteries based on Na+-Confined Na+/Mg2+ Coinsertion Chemistry
Fuyu Chen
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorCorresponding Author
Hong-Yi Li
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQing Zhong
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorZijie Cai
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorDong Wang
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorJiang Diao
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorGuangsheng Huang
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorJingfeng Wang
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorCorresponding Author
Fusheng Pan
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorFuyu Chen
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorCorresponding Author
Hong-Yi Li
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQing Zhong
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorZijie Cai
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorDong Wang
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorJiang Diao
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorGuangsheng Huang
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorJingfeng Wang
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorCorresponding Author
Fusheng Pan
National Innovation Center for lndustry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 China
National Magnesium Alloy Material Engineering Technology Research Center, Chongqing University, Chongqing, 400044 China
National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400044 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Magnesium–sodium hybrid ion batteries (MSHIBs) are expected to achieve excellent rate capability. However, existing MSHIB cathodes exhibit low ionic conductivity and poor structural stability, resulting in low power density and cycle lifespan. Herein, sodium-rich Na3.7V6O16·2.9H2O (Na-rich NVO) nanobelts are synthesized as MSHIB cathodes. Excess Na+ induced NaO5 and NaO3 interlayer pins, which ensures NVO structural stability to accommodate Mg2+ and Na+. They also confine the migration pathway of cations to the diffusion direction, lowering the migration barriers of Mg2+ and enhancing the ionic conductivity. Excess interlayer Na+ increases the electronic conductivity of the involved Na-rich NVO cathode. The cathode exhibits a high Mg2+ diffusion coefficient, and the resulting MSHIBs exhibit a power density of 3.4 kW kg−1 and a lifespan of 20 000 cycles at 5.0 A g−1, with a capacity retention rate of 85%. Overall, this study paves the way for designing and developing fast-charging secondary batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401195-sup-0001-SuppMat.pdf886.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Adv. Energy Mater. 2023, 13, 2300682.
- 2D. Wu, J. Zeng, H. Hua, J. Wu, Y. Yang, J. Zhao, Nano Res. 2020, 13, 335.
- 3J. J. Ye, P. H. Li, H. R. Zhang, Z. Y. Song, T. Fan, W. Zhang, J. Tian, T. Huang, Y. Qian, Z. Hou, N. Shpigel, L. F. Chen, S. X. Dou, Adv. Funct. Mater. 2023, 33, 2305659.
- 4Z. Ye, P. Li, W. Wei, C. Huang, L. Mi, J. Zhang, J. Zhang, Adv. Sci. 2022, 9, 2200067.
- 5Z. Guo, W. Wei, J. Shi, P. Wang, Z. Ye, L. Mi, Nanoscale 2023, 15, 1702.
- 6X. Ren, D. Tao, S. Cui, T. Li, Y. Cao, F. Xu, Energy Storage Mater. 2023, 63, 102992.
- 7G. Zou, Z. Tian, V. S. Kale, W. Wang, S. Kandembeth, Z. Cao, J. Guo, J. Czaban-Jóźwiak, L. Cavallo, O. Shekhah, M. Eddaoudi, H. N. Alshareef, Adv. Energy Mater. 2022, 13, 202203193.
- 8Y. Ding, T. Han, Z. Wu, Y. Guan, J. Hu, C. Hu, Y. Tian, J. Liu, ACS Nano 2022, 16, 15369.
- 9Y. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z. D. Huang, T. Minato, C. Tassel, J. Kim, Y. Kobayashi, T. Abe, H. Kageyama, Y. Uchimoto, Sci. Rep. 2014, 4, 5622.
- 10S. Ding, X. Dai, Y. Tian, B. Song, L. Wang, G. Li, S. Li, J. Huang, Z. Li, A. Meng, Nano Energy 2022, 93, 106838.
- 11C. Wu, L. Xue, R. Xu, J. Fan, T. Chen, W. Tang, L. Cui, A. Wang, S. X. Dou, C. Peng, Mater. Today Energy 2024, 40, 101485.
- 12T. Mandai, U. Tanaka, M. Watanabe, Energy Storage Mater. 2024, 67, 103302.
- 13Y. Han, G. Li, Z. Hu, F. Wang, J. Chu, L. Huang, T. Shi, H. Zhan, Z. Song, Energy Storage Mater. 2022, 46, 300.
- 14P. Wang, X. Yan, Energy Storage Mater. 2022, 45, 142.
- 15H. Dong, Y. Li, Y. Liang, G. Li, C. J. Sun, Y. Ren, Y. Lu, Y. Yao, Chem. Commun. 2016, 52, 8263.
- 16H. Xu, X. Zhang, T. Xie, Z. Li, F. Sun, N. Zhang, H. Chen, Y. Zhu, X. Zou, C. Lu, J. Zou, R. M. Laine, Energy Storage Mater. 2022, 46, 583.
- 17X. Wang, T. Li, X. Zhang, Y. Wang, H. Li, H. F. Li, G. Zhao, C. Han, J. Energy Chem. 2024, 96, 79.
- 18X. Yu, G. Zhao, C. Liu, C. Wu, H. Huang, J. He, N. Zhang, Adv. Funct. Mater. 2021, 31, 202103214.
- 19B. Li, Z. Li, H. Chen, X. Zhang, S. Wu, H. Xu, Y. Yao, Y. Li, X. Li, Z. Hu, R. M. Laine, J. Zou, K. Zhang, Mater. Today Energy 2022, 27, 101047.
- 20Y. Wang, C. Wang, X. Yi, Y. Hu, L. Wang, L. Ma, G. Zhu, T. Chen, Z. Jin, Energy Storage Mater. 2019, 23, 741.
- 21H. Huang, G. Zhao, N. Zhang, K. Sun, Nanoscale 2019, 11, 16222.
- 22Y. Li, Q. An, Y. Cheng, Y. Liang, Y. Ren, C. J. Sun, H. Dong, Z. Tang, G. Li, Y. Yao, Nano Energy 2017, 34, 188.
- 23M. Walter, K. V. Kravchyk, M. Ibáñez, M. V. Kovalenko, Chem. Mat. 2015, 27, 7452.
- 24X. Bian, Y. Gao, Q. Fu, S. Indris, Y. Ju, Y. Meng, F. Du, N. Bramnik, H. Ehrenberg, Y. Wei, J. Mater. Chem. A 2017, 5, 600.
- 25Y. Tang, X. Li, H. Lv, W. Wang, Q. Yang, C. Zhi, H. Li, Angew. Chem., Int. Ed. 2021, 60, 5443.
- 26J. Zeng, Z. Cao, Y. Yang, Y. Wang, Y. Peng, Y. Zhang, J. Wang, J. Zhao, Electrochim. Acta 2018, 284, 1.
- 27Y. Xu, W. Cao, Y. Yin, J. Sheng, Q. An, Q. Wei, W. Yang, L. Mai, Nano Energy 2019, 55, 526.
- 28X. Cao, L. Wang, J. Chen, J. Zheng, J. Mater. Chem. A 2018, 6, 15762.
- 29X. Wang, B. Xi, X. Ma, Z. Feng, Y. Jia, J. Feng, Y. Qian, S. Xiong, Nano Lett. 2020, 20, 2899.
- 30P. Novak, W. Scheifele, F. Joho, O. Haas, J. Electrochem. Soc. 1995, 142, 2544.
- 31Y. Zhu, G. Huang, J. Yin, Y. Lei, A. H. Emwas, X. Yu, O. F. Mohammed, H. N. Alshareef, Adv. Energy Mater. 2020, 10, 2002128.
- 32X. Deng, Y. Xu, Q. An, F. Xiong, S. Tan, L. Wu, L. Mai, J. Mater. Chem. A 2019, 7, 10644.
- 33F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H. N. Alshareef, ACS Energy Lett. 2018, 3, 2602.
- 34C. Zuo, W. Tang, B. Lan, F. Xiong, H. Tang, S. Dong, W. Zhang, C. Tang, J. Li, Y. Ruan, S. Xi, Q. An, P. Luo, Chem. Eng. J. 2021, 405, 127005.
- 35G. Zhang, T. Wu, H. Zhou, H. Jin, K. Liu, Y. Luo, H. Jiang, K. Huang, L. Huang, J. Zhou, ACS Energy Lett. 2021, 6, 2111.
- 36R. Sun, X. Ji, C. Luo, S. Hou, P. Hu, X. Pu, L. Cao, L. Mai, C. Wang, SmallSmall 2020, 16, 2000741.
- 37Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong, S. Tan, Q. Wei, J. Lu, J. Li, Q. An, L. Mai, Chem 2019, 5, 1194.
- 38M. Tian, C. Liu, J. Zheng, X. Jia, E. P. Jahrman, G. T. Seidler, D. Long, M. Atif, M. Alsalhi, G. Cao, Energy Storage Mater. 2020, 29, 9.
- 39M. Li, Y. Zhang, J. Hu, X. Wang, J. Zhu, C. Niu, C. Han, L. Mai, Nano Energy 2022, 100, 107539.
- 40Y. Du, Y. Xu, Y. Zhang, B. Yang, H. Lu, C. Ge, D. Bin, Chem. Eng. J. 2023, 457, 141162.
- 41H. Liu, X. Hou, T. Fang, Q. Zhang, N. Gong, W. Peng, Y. Li, F. Zhang, X. Fan, Energy Storage Mater. 2023, 55, 279.
- 42F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, Nano-Micro Lett. 2019, 11, 25.
- 43Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu, J. Zhang, J. Wang, D. Tao, Q. Zhang, G. Cao, Adv. Energy Mater. 2023, 13, 202301480.
- 44R. Ge, Y. Wang, Z. Li, M. Xu, S. M. Xu, H. Zhou, K. Ji, F. Chen, J. Zhou, H. Duan, Angew. Chem., Int. Ed. 2022, 61, 202200211.
- 45L. Yang, Y. J. Zhu, F. Zeng, H. P. Yu, L. Y. Dong, J. Tao, G. He, H. Li, Energy Storage Mater. 2024, 65, 103162.
- 46M. Xu, F. Zhang, Y. Zhang, C. Wu, X. Zhou, X. Ai, J. Qian, Chem. Sci. 2023, 14, 12570.
- 47Y. Gui, P. Luo, C. Ji, Y. Lin, X. Chen, ACS Appl. Nano Mater 2022, 5, 12907.
- 48S. Cao, Y. Liu, Y. Hu, J. Li, C. Yang, Z. Chen, Z. Wang, S. Wei, S. Liu, X. Lu, J. Colloid Interface Sci. 2023, 642, 273.
- 49L. Zhu, M. Wang, S. Xiang, D. Sun, Y. Tang, H. Wang, Adv. Energy Mater. 2023, 13, 2302046.
- 50D. Wu, Y. Zhuang, F. Wang, Y. Yang, J. Zeng, J. Zhao, Nano Res. 2023, 16, 4880.
- 51D. Wu, Z. Wen, H. Jiang, H. Li, Y. Zhuang, J. Li, Y. Yang, J. Zeng, J. Cheng, J. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 12049.
- 52J. Zeng, Y. Yang, S. Lai, J. Huang, Y. Zhang, J. Wang, J. Zhao, Chem. Eur. J. 2017, 23, 16898.
- 53Q. Han, Y. n. Hu, S. Gao, Z. Yang, X. Liu, C. Wang, J. Han, Chem. Sus. Chem. 2023, 16, 202300823.
10.1002/cssc.202300823 Google Scholar
- 54W. Wang, Y. Gang, Z. Hu, Z. Yan, W. Li, Y. Li, Q. F. Gu, Z. Wang, S. L. Chou, H. K. Liu, S. X. Dou, Nat. Commun. 2020, 11, 980.
- 55Z. Wang, M. T. Sougrati, Y. He, P. N. Le Pham, W. Xu, A. Iadecola, R. Ge, W. Zhou, Q. Zheng, X. Li, J. Wang, Nano Energy 2023, 109, 108256.
- 56J. Guo, J. Liu, W. Ma, Z. Sang, L. Yin, X. Zhang, H. Chen, J. Liang, D. a. Yang, Adv. Funct. Mater. 2023, 33, 202302659.
- 57R. Cui, J. Gu, N. Wang, Y. Wang, X. Huang, S. Zhang, L. Lu, D. Wang, Small 2023, 20, 2307849.
- 58C. Li, A. Shyamsunder, B. Key, Z. Yu, L. F. Nazar, Joule 2023, 7, 2798.
- 59R. Sun, S. Hou, C. Luo, X. Ji, L. Wang, L. Mai, C. Wang, Nano Lett. 2020, 20, 3880.
- 60Y. Xiu, A. Mauri, S. Dinda, Y. Pramudya, Z. Ding, T. Diemant, A. Sarkar, L. Wang, Z. Li, W. Wenzel, M. Fichtner, Z. Zhao-Karger, Angew. Chem., Int. Ed. 2023, 62, 202212339.
- 61Y. Ding, D. Chen, X. Ren, Y. Cao, F. Xu, J. Mater. Chem. A 2022, 10, 14111.
- 62L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. Xiong, S. Tan, Q. An, Y. M. Kang, Z. Zhou, L. Mai, Adv. Mater. 2018, 30, 1801984.
- 63H. D. Yoo, Y. Liang, H. Dong, J. Lin, H. Wang, Y. Liu, L. Ma, T. Wu, Y. Li, Q. Ru, Y. Jing, Q. An, W. Zhou, J. Guo, J. Lu, S. T. Pantelides, X. Qian, Y. Yao, Nat. Commun. 2017, 8, 339.
- 64A. Morag, X. Chu, M. Marczewski, J. Kunigkeit, C. Neumann, D. Sabaghi, G. Z. Zukowska, J. Du, X. Li, A. Turchanin, E. Brunner, X. Feng, M. Yu, Angew. Chem., Int. Ed. 2024, 63, 202401818.
- 65T. Zhou, T. Han, X. Lin, J. Liu, X. Zeng, P. Zhan, J. Liu, J. Niu, Nano Lett. 2024, 24, 4400.
- 66Y. Wang, H. Lan, S. Dong, Q. Zhu, L. Cheng, H. Wang, J. Wang, S. Wang, M. Tang, K. M. Shodievich, G. Wang, H. Wang, Adv. Funct. Mater. 2024, 34, 202315498.
- 67J. Zhou, Y. Wang, J. Wang, Y. Liu, Y. Li, L. Cheng, Y. Ding, S. Dong, Q. Zhu, M. Tang, Y. Wang, Y. Bi, R. Sun, Z. Wang, H. Wang, Energy Storage Mater. 2022, 50, 47.
- 68M. K. Shehab, K. S. Weeraratne, T. Huang, K. U. Lao, H. M. El-Kaderi, ACS Appl. Mater. Interfaces 2021, 13, 15083.