Improving the Cycling Stability of NCM811 at High-Voltage 4.5V in Ester-Based Electrolytes with LiDFOB
Yaqi Chen
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
Search for more papers by this authorCorresponding Author
Xieyu Xu
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorXuyang Wang
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
Search for more papers by this authorXingXing Jiao
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, Sichuan, 610031 China
Search for more papers by this authorYing Bai
International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004 China
Search for more papers by this authorShizhao Xiong
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorCorresponding Author
Yongjing Wang
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhongxiao Song
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yangyang Liu
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYaqi Chen
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
Search for more papers by this authorCorresponding Author
Xieyu Xu
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorXuyang Wang
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
Search for more papers by this authorXingXing Jiao
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, Sichuan, 610031 China
Search for more papers by this authorYing Bai
International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004 China
Search for more papers by this authorShizhao Xiong
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorCorresponding Author
Yongjing Wang
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhongxiao Song
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yangyang Liu
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049 China
School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Nickel-rich layered cathode materials, particularly LiNi0.8Mn0.1Co0.1O2 (NCM811), have garnered significant attention due to their high energy density and impressive electrochemical performance. However, their cycling stability is compromised at elevated voltages, primarily due to structural instability and interfacial degradation. In this study, lithium difluoro(oxalato)borate (LiDFOB) is introduced into a commercial electrolyte based on lithium hexafluorophosphate (LiPF6) to elucidate the structural and interfacial changes occurring in NCM811 at a high cut-off voltage of 4.5 V. It is found that the preferential decomposition of LiPF6 leads to the formation of a protective inert interface. At the same time, violent anisotropic lattice contraction and expansion generate cracks that contribute to the rapid degradation of NCM811. Notably, the incorporation of LiDFOB significantly mitigates these detrimental effects. Consequently, NCM811|Li cells utilizing this optimized electrolyte demonstrate an initial specific capacity of 214 mAh g−1 and remarkable capacity retention of 83.6% after 400 cycles at a 1C rate (1C = 200 mAh g−1). The findings pave the way for leveraging higher capacities of NCM811 at elevated cut-off voltages, thereby enhancing its viability for high-end energy applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401178-sup-0001-SuppMat.docx1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) F. Zou, J.-B. Kim, J. Zhang, G.-H. Lee, L. Lyu, J.-H. Choi, T. Kankaanpää, Y. M. Lee, Y.-M. Kang, Energy Environ. Sci. 2024, 17, 4319; b) H.-H. Ryu, B. Namkoong, J.-H. Kim, I. Belharouak, C. S. Yoon, Y.-K. Sun, ACS Energy Lett. 2021, 6, 2726; c) R. Sim, Z. Cui, A. Manthiram, ACS Energy Lett. 2023, 8, 5143.
- 2a) Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y. A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareño, Y. Ren, W. Lu, Y. Li, Nat. Energy 2018, 3, 936; b) Z. Yang, Z. Li, Y. Huang, M. Zhang, C. Liu, D. Zhang, G. Cao, J. Power Sources 2020, 471, 228480.
- 3a) J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng, L. Yuan, H. Xu, Y. Huang, Adv. Mater. 2022, 34, 2200912; b) A. Aribia, J. Sastre, X. B. Chen, M. H. Futscher, M. Rumpel, A. Priebe, M. Döbeli, N. Osenciat, A. N. Tiwari, Y. E. Romanyuk, Adv. Energy Mater. 2022, 12, 2201750; c) T. L. W. Huang, L. Yu, J. Wang, T. Zhou, J. Liu, T. Li, R. Amine, X. Xiao, M. Ge, L. Ma, S. N. Ehrlich, M. V. Holt, J. Wen, K. Amine, Science 2024, 384, 912.
- 4a) B. Namkoong, N. Y. Park, G. T. Park, J. Y. Shin, T. Beierling, C. S. Yoon, Y. K. Sun, Adv. Energy Mater. 2022, 12, 2200615; b) E. Trevisanello, R. Ruess, G. Conforto, F. H. Richter, J. Janek, Adv. Energy Mater. 2021, 11, 2003400; c) W. Liu, X. Li, Y. Hao, D. Xiong, H. Shan, J. Wang, W. Xiao, H. Yang, H. Yang, L. Kou, Z. Tian, L. Shao, C. Zhang, Adv. Funct. Mater. 2021, 31, 2008301; d) Q. Li, X. Yu, H. Li, eTransportation 2022, 14, 100201.
- 5W. Xue, M. Huang, Y. Li, Y. G. Zhu, R. Gao, X. Xiao, W. Zhang, S. Li, G. Xu, Y. Yu, P. Li, J. Lopez, D. Yu, Y. Dong, W. Fan, Z. Shi, R. Xiong, C.-J. Sun, I. Hwang, W.-K. Lee, Y. Shao-Horn, J. A. Johnson, J. Li, Nat. Energy 2021, 6, 495.
- 6Y. Yan, Q. Fang, X. Kuai, S. Zhou, J. Chen, H. Zhang, X. Wu, G. Zeng, Z. Wu, B. Zhang, Y. Tang, Q. Zheng, H. G. Liao, K. Dong, I. Manke, X. Wang, Y. Qiao, S. G. Sun, Adv. Mater. 2024, 36, 2308656.
- 7F. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. Xin, M. M. Doeff, Nat. Commun. 2014, 5, 3529.
- 8a) M. Jiang, D. L. Danilov, R. A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2021, 11, 2103005; b) P. Oh, J. Yun, S. Park, G. Nam, M. Liu, J. Cho, Adv. Energy Mater. 2020, 11, 2003197; c) Y. Su, G. Chen, L. Chen, Q. Li, Y. Lu, L. Bao, N. Li, S. Chen, F. Wu, Chin. J. Chem. 2020, 38, 1817.
- 9M. Mao, B. Huang, Q. Li, C. Wang, Y.-B. He, F. Kang, Nano Energy 2020, 78, 105282.
- 10K. Y. Park, Y. Zhu, C. G. Torres-Castanedo, H. J. Jung, N. S. Luu, O. Kahvecioglu, Y. Yoo, J. T. Seo, J. R. Downing, H. D. Lim, M. J. Bedzyk, C. Wolverton, M. C. Hersam, Adv. Mater. 2022, 34, 2106402.
- 11a) K.-J. Park, M.-J. Choi, F. Maglia, S.-J. Kim, K.-H. Kim, C. S. Yoon, Y.-K. Sun, Adv. Energy Mater. 2018, 8, 1703612; b) S. Yin, W. Deng, J. Chen, X. Gao, G. Zou, H. Hou, X. Ji, Nano Energy 2021, 83, 105854.
- 12J. L. Tebbe, T. F. Fuerst, C. B. Musgrave, J. Power Sources 2015, 297, 427.
- 13a) J. Langdon, A. Manthiram, Adv. Mater. 2022, 34, 2205188; b) X. Zhang, H. Jia, L. Zou, Y. Xu, L. Mu, Z. Yang, M. H. Engelhard, J.-M. Kim, J. Hu, B. E. Matthews, C. Niu, C. Wang, H. Xin, F. Lin, W. Xu, ACS Energy Lett. 2021, 6, 1324.
- 14a) Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang, W. Hu, D. Y. W. Yu, Adv. Funct. Mater. 2021, 31, 2102360; b) J. Li, W. Li, Y. You, A. Manthiram, Adv. Energy Mater. 2018, 8, 1801957.
- 15a) Y. Lu, Y. Zhang, Q. Zhang, F. Cheng, J. Chen, Particuology 2020, 53, 1; b) P. Hou, F. Li, Y. Sun, H. Li, X. Xu, T. Zhai, ACS Appl. Mater. Interfaces 2018, 10, 24508; c) R. Qian, Y. Liu, T. Cheng, P. Li, R. Chen, Y. Lyu, B. Guo, ACS Appl. Mater. Interfaces 2020, 12, 13813.
- 16K. Yuan, N. Li, R. Ning, C. Shen, N. Hu, M. Bai, K. Zhang, Z. Tian, L. Shao, Z. Hu, X. Xu, T. Yu, K. Xie, Nano Energy 2020, 78, 105239.
- 17H. H. Sun, U. H. Kim, J. H. Park, S. W. Park, D. H. Seo, A. Heller, C. B. Mullins, C. S. Yoon, Y. K. Sun, Nat. Commun. 2021, 12, 6552.
- 18P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 2002, 98, 11623.
- 19a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297; b) J. Zheng, X. Xu, D. G. Truhlar, Theor. Chem. Acc. 2010, 128, 295.
- 20a) F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98; b) G. L. Stoychev, A. A. Auer, F. Neese, J. Chem. Theory Comput. 2017, 13, 554.
- 21a) D. S. Hall, J. Self, J. R. Dahn, J. Phys. Chem. C 2015, 119, 22322; b) K.-H. Lee, S.-J. Park, Korean J. Chem. Eng. 2017, 35, 222.
- 22E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2019, 150, 154122.
- 23a) J. Zhang, T. Lu, Phys. Chem. Chem. Phys. 2021, 23, 20323; b) T. Lu, F. Chen, J. Comput. Chem. 2011, 33, 580.
- 24W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph 1996, 14, 33.
- 25a) X. Jiao, Y. Wang, Y. Chen, J. Wang, S. Xiong, Z. Song, X. Xu, Y. Liu, Energy Storage Mater. 2023, 61, 102864; b) X. Jiao, Y. Wang, S. Xiong, X. Xu, Z. Song, Y. Liu, Acta Mater. 2024, 265, 119607.