Zincophile Zn2+ Conductor Regulation by Ultrathin Nano MoO3 Coating for Dendrite-Free Zn Anode
Haisheng Lin
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorShujuan Cai
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorLanyan Li
School of Science, Hunan University of Technology and Business, Changsha, 410205 China
Search for more papers by this authorZhongyun Ma
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorXianyou Wang
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorShuquan Liang
School of Materials Science and Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Guozhao Fang
School of Materials Science and Engineering, Central South University, Changsha, 410083 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Manjun Xiao
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhigao Luo
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan, 411105 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHaisheng Lin
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorShujuan Cai
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorLanyan Li
School of Science, Hunan University of Technology and Business, Changsha, 410205 China
Search for more papers by this authorZhongyun Ma
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorXianyou Wang
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorShuquan Liang
School of Materials Science and Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Guozhao Fang
School of Materials Science and Engineering, Central South University, Changsha, 410083 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Manjun Xiao
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhigao Luo
College of Chemistry, Xiangtan University, Xiangtan, 411105 China
National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan, 411105 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Aqueous battery with nonflammable and instinctive safe properties has received great attention. However, issues related to Zn anode such as side reactions and rampant dendrite growth hinder the long-term circulation of AZMBs. Herein, an ultrathin(35 nm) MoO3 coating is deposited on the Zn anode by means of vacuum vapor deposition for the first time. Due to the peculiar layer structure of MoO3, insertion of Zn2+ in ZnxMoO3 acts as Zn2+ ion conductor, which regulates Zn2+ deposition in an ordered manner. Additionally, the MoO3 coating can also inhibit the hydrogen evolution and corrosion reactions at the interface. Therefore, both Zn//MoO3@Cu asymmetric battery and Zn symmetric battery cells manage to deliver satisfactory electrochemical performances. The symmetric cell assembled with MoO3@Zn shows a significant long cycle life of more than 1600 h at a current density of 2 mA cm−2. Meanwhile, the MoO3@Zn//Cu asymmetric cell exhibits an ultrahigh Zn deposition/stripping efficiency of 99.82% after a stable cycling of 650 h at 2 mA cm−2. This study proposes a concept of “zincophile Zn2+ conductor regulation” to dictate Zn electrodeposition and broadens novel design of vacuum evaporation for nano MoO3 modified Zn anodes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202401096-sup-0001-SuppMat.docx10.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587.
- 2L. E. Blanc, D. Kundu, L. F. Nazar, Joule 2020, 4, 771.
- 3Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Adv. Mater. 2022, 34, 2106409.
- 4A. Konarov, N. Voronina, J. H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, ACS Energy Lett. 2018, 3, 2620.
- 5V. Yufit, F. Tariq, D. S. Eastwood, M. Biton, B. Wu, P. D. Lee, N. P. Brandon, Joule 2019, 3, 485.
- 6P. Ruan, S. Liang, B. Lu, H. J. Fan, J. Zhou, Angew. Chem., Int. Ed. 2022, 61, 202200598.
- 7H. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun, Z. Hou, Y. Huyan, Y. Cao, C. Wei, F. Kang, Energy Environ. Sci. 2022, 15, 1872.
- 8H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, Energy Environ. Sci. 2014, 7, 3857.
- 9C. Han, W. Li, H. K. Liu, S. Dou, J. Wang, Nano Energy 2020, 74, 104880.
- 10Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin, C. Mao, L. Wang, L. Dai, H. Liu, K. Pan, X. Wu, Q. Zhang, Z. He, Energy Storage Mater. 2022, 51, 733.
- 11N. Guo, W. Huo, X. Dong, Z. Sun, Y. Lu, X. Wu, L. Dai, L. Wang, H. Lin, H. Liu, H. Liang, Z. He, Q. Zhang, Small Methods 2022, 6, 2200597.
- 12J.-M. Oh, C. C. Venters, C. Di, A. M. Pinto, L. Wan, I. Younis, Z. Cai, C. Arai, B. R. So, J. Duan, G. Dreyfuss, Nat. Commun. 2020, 11, 1.
- 13T. Wang, C. Li, X. Xie, B. Lu, Z. He, S. Liang, J. Zhou, ACS Nano 2020, 14, 16321.
- 14X. Liang, Q. Pang, I. R. Kochetkov, M. S. Sempere, H. Huang, X. Sun, L. F. Nazar, Nat. Energy 2017, 2, 17119.
- 15Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 2019, 12, 1938.
- 16J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim, J. W. Choi, Adv. Energy Mater. 2021, 11, 2100676.
- 17Y. Zhou, X. Wang, X. Shen, Y. Shi, C. Zhu, S. Zeng, H. Xu, P. Cao, Y. Wang, J. Di, Q. Li, J. Mater. Chem. A 2020, 8, 11719.
- 18C. Shen, X. Li, N. Li, K. Xie, J.-g. Wang, X. Liu, B. Wei, ACS Appl. Mater. Interfaces 2018, 10, 25446.
- 19L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang, C. Zhi, Adv. Energy Mater. 2018, 8, 1801090.
- 20K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei, P. He, Y. Dong, Z. Zhang, X. Wang, L. Mai, Adv. Mater. Interfaces 2018, 5, 1800848.
- 21H. He, H. Tong, X. Song, X. Song, J. Liu, J. Mater. Chem. A 2020, 8, 7836.
- 22Y. Zeng, H. Wang, M. Rauf, H. Mi, L. Sun, Q. Wu, Q. Zhang, X. Ren, Y. Li, Electrochim. Acta 2023, 447, 142085.
- 23D. M. Mattox, Met. Finish. 2001, 99, 409.
10.1016/S0026-0576(01)85301-0 Google Scholar
- 24J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645.
- 25X. He, H. Zhang, X. Zhao, P. Zhang, M. Chen, Z. Zheng, Z. Han, T. Zhu, Y. Tong, X. Lu, Adv. Sci. 2019, 6, 1900151.
- 26C. Deng, X. Xie, J. Han, Y. Tang, J. Gao, C. Liu, X. Shi, J. Zhou, S. Liang, Adv. Funct. Mater. 2020, 30, 2000599.
- 27Y. Liu, X. Xu, M. Sadd, O. O. Kapitanova, V. A. Krivchenko, J. Ban, J. Wang, X. Jiao, Z. Song, J. Song, S. Xiong, A. Matic, Adv. Sci. 2021, 8, 2003301.
- 28F. Wang, H. Lu, H. Li, J. Li, L. Wang, D. Han, J. Gao, C. Geng, C. Cui, Z. Zhang, Z. Weng, C. Yang, J. Lu, F. Kang, Q.-H. Yang, Energy Storage Mater. 2022, 50, 641.
- 29Q. Zhou, Z. Shen, C. Zhu, J. Li, Z. Ding, P. Wang, F. Pan, Z. Zhang, H. Ma, S. Wang, H. Zhang, Adv. Mater. 2018, 30, 1800140.
- 30J. Yang, A. R. Mohmad, Y. Wang, R. Fullon, X. Song, F. Zhao, I. Bozkurt, M. Augustin, E. J. G. Santos, H. S. Shin, W. Zhang, D. Voiry, H. Y. Jeong, M. Chhowalla, Nat. Mater. 2019, 18, 1309.
- 31C. Yan, R. Xu, Y. Xiao, J.-F. Ding, L. Xu, B.-Q. Li, J.-Q. Huang, Adv. Funct. Mater. 2020, 30, 1909887.
- 32Z. Chang, H. Yang, Y. Qiao, X. Zhu, P. He, H. Zhou, Adv. Mater. 2022, 34, 2201339.
- 33H. Yang, Y. Qiao, Z. Chang, H. Deng, X. Zhu, R. Zhu, Z. Xiong, P. He, H. Zhou, Adv. Mater. 2021, 33, 2102415.
- 34P. Wang, S. Liang, C. Chen, X. Xie, J. Chen, Z. Liu, Y. Tang, B. Lu, J. Zhou, Adv. Mater. 2022, 34, 2202733.
- 35M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, G. Fang, J. Zhou, S. Liang, Adv. Mater. 2021, 33, 2100187.
- 36M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi, W. Mai, Angew. Chem., Int. Ed. 2022, 61, 202210979.
- 37Q. Li, A. Chen, D. Wang, Z. Pei, C. Zhi, Joule 2022, 6, 273.
- 38B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu, C. Wang, A. Pan, S. Liang, J. Mater. Chem. A 2019, 7, 940.
- 39S. Xia, Q. Luo, J. Liu, X. Yang, J. Lei, J. Shao, X. Tang, Small 2024, 20, 2310497.