Deciphering Spatially-Resolved Electrochemical Nucleation and Growth Kinetics by Correlative Multimicroscopy
Daniel Torres
ChemSIN – Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050 Belgium
Search for more papers by this authorMiguel Bernal
ChemSIN – Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050 Belgium
Search for more papers by this authorCorresponding Author
Jon Ustarroz
ChemSIN – Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050 Belgium
SURF – Research Group Electrochemical and Surface Engineering, Department Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium
E-mail: [email protected]
Search for more papers by this authorDaniel Torres
ChemSIN – Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050 Belgium
Search for more papers by this authorMiguel Bernal
ChemSIN – Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050 Belgium
Search for more papers by this authorCorresponding Author
Jon Ustarroz
ChemSIN – Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050 Belgium
SURF – Research Group Electrochemical and Surface Engineering, Department Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium
E-mail: [email protected]
Search for more papers by this authorAbstract
The study employs a multimicroscopy approach, combining Scanning Electrochemical Cell Microscopy (SECCM) and Field Emission Scanning Electron Microscopy (FESEM), to investigate electrochemical nucleation and growth (EN&G). Cu nanoparticles (NPs) are meticulously electrodeposited on glassy carbon (GC), to perform co-located characterization, supported by analytical modeling and statistical analysis. The findings reveal clear correlations between electrochemical descriptors (i–t transients) and physical descriptors (NPs size and distribution), offering valuable insights into nucleation kinetics, influenced by varied overpotentials, surface state, and electrode's area. Analysis of the stochasticity of nucleation reveals intriguing temporal distributions, indicating an increased likelihood of nucleation with higher overpotential and larger electrode's area. Notably, the local surface state significantly influences nucleation site number and activity, leading to spatial differences in nucleation rates unaccounted for in macroscopic experiments. The updated analytical model for EN&G current transients, considering SECCM geometry, shows excellent agreement with FESEM measurements, facilitating the calculation of active sites within individual regions. These results deepen the understanding of EN&G phenomena from a new perspective, and lay the groundwork for further theoretical advancements, showcasing the great potential of current experimental methods in advancing precise electrochemical manufacturing of micro- and nanostructures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401029-sup-0001-SuppMat.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Miranda-Hernández, M. Palomar-Pardavé, N. Batina, I. González, J. Electroanal. Chem. 1998, 443, 81.
- 2J. Mostany, J. Mozota, B. R. Scharifker, J. Electroanal. Chem. 1984, 177, 25.
- 3A. Milchev, S. Stoyanov, J. Electroanal. Chem. Interfacial Electrochem. 1976, 72, 33.
- 4M. Tomellini, S. Politi, Phys. A Stat. Mech. its Appl. 2019, 513, 175.
- 5S. Fletcher, T. Lwin, Electrochim. Acta 1983, 28, 237.
- 6J. Ustarroz, Curr. Opin. Electrochem. 2020, 19, 144.
- 7M. E. Hyde, R. G. Compton, J. Electroanal. Chem. 2003, 549, 1.
- 8B. R. Scharifker, J. Mostany, J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 13.
- 9D. Torres, M. Bernal, A. Demaude, S. Hussain, L. Bar, P. Losada-Pérez, F. Reniers, J. Ustarroz, J. Electrochem. Soc. 2022, 169, 102513.
- 10M. Bernal, D. Torres, S. S. Parapari, M. Čeh, K. Ž. Rožman, S. Šturm, J. Ustarroz, Electrochim. Acta 2023, 445, 142023.
- 11D. Torres, J. Bailly, M. Bernal, L. B. Coelho, J. Ustarroz, J. Solid State Electrochem. 2024, 28, 1719.
- 12D. Valavanis, P. Ciocci, G. N. Meloni, P. Morris, J.-F. Lemineur, I. J. McPherson, F. Kanoufi, P. R. Unwin, Faraday Discuss. 2022, 34, 240.
- 13P. Ciocci, D. Valavanis, G. N. Meloni, J. Lemineur, P. R. Unwin, F. Kanoufi, ChemElectroChem 2023, 10, 202201162.
- 14L. Godeffroy, J.-F. Lemineur, V. Shkirskiy, M. M. Vieira, J.-M. Noël, F. Kanoufi, Small Methods 2022, 6, 2200659.
- 15J. F. Lemineur, P. Ciocci, J. M. Noël, H. Ge, C. Combellas, F. Kanoufi, ACS Nano 2021, 15, 2643.
- 16M. Mita, H. Matsushima, M. Ueda, H. Ito, J. Colloid Interface Sci. 2022, 614, 389.
- 17R. L. Harniman, D. Plana, G. H. Carter, K. A. Bradley, M. J. Miles, D. J. Fermín, Nat. Commun. 2017, 8, 971.
- 18L. Zhang, L. Zhang, B. Yu, R. Wang, F. Yang, J. Phys. D. Appl. Phys. 2023, 56, 413001.
- 19A. Radisic, P. M. Vereecken, P. C. Searson, F. M. Ross, Surf. Sci. 2006, 600, 1817.
- 20A. Radisic, P. M. Vereecken, J. B. Hannon, P. C. Searson, F. M. Ross, Nano Lett. 2006, 6, 238.
- 21M. J. Williamson, R. M. Tromp, P. M. Vereecken, R. Hull, F. M. Ross, Nat. Mater. 2003, 2, 532.
- 22M. Wang, C. Park, T. J. Woehl, Chem. Mater. 2018, 30, 7727.
- 23P. Grosse, A. Yoon, C. Rettenmaier, S. W. Chee, B. R. Cuenya, J. Phys. Chem. C 2020, 124, 26908.
- 24M. Bernal, D. Torres, S. S. Parapari, L. B. Coelho, S. Delfosse, M. Čeh, K. Žužek, S. Šturm, J. Ustarroz, Electrochim. Acta 2024, 492, 144302.
- 25J. Vavra, T.-H. Shen, D. Stoian, V. Tileli, R. Buonsanti, Angew. Chem., Int. Ed. 2021, 133, 1367.
10.1002/ange.202011137 Google Scholar
- 26C. Han, M. T. Islam, C. Ni, ACS Omega 2021, 6, 6537.
- 27E. Fahrenkrug, D. H. Alsem, N. Salmon, S. Maldonado, J. Electrochem. Soc. 2017, 164, H358.
- 28T. J. Woehl, P. Abellan, J. Microsc. 2017, 265, 135.
- 29M. D. Heijer, I. Shao, A. Radisic, M. C. Reuter, F. M. Ross, APL Mater. 2014, 2, https://doi.org/10.1063/1.4863596.
10.1063/1.4863596 Google Scholar
- 30N. Hodnik, G. Dehm, K. J. J. Mayrhofer, Acc. Chem. Res. 2016, 49, 2015.
- 31T. J. Woehl, T. Moser, J. E. Evans, F. M. Ross, MRS Bull. 2020, 45, 746.
- 32P. V. Dudin, P. R. Unwin, J. V. Macpherson, J. Phys. Chem. C 2010, 114, 13241.
- 33S. C. S. Lai, R. A. Lazenby, P. M. Kirkman, P. R. Unwin, Chem. Sci. 2015, 6, 1126.
- 34Y. R. Kim, S. C. S. Lai, K. McKelvey, G. Zhang, D. Perry, T. S. Miller, P. R. Unwin, J. Phys. Chem. C 2015, 119, 17389.
- 35I. M. Ornelas, P. R. Unwin, C. L. Bentley, Anal. Chem. 2019, 91, 14854.
- 36M. M. Rahman, C. L. Tolbert, P. Saha, J. M. Halpern, C. M. Hill, ACS Nano 2022, 16, 21275.
- 37D. Martín-Yerga, D. C. Milan, X. Xu, J. Fernández-Vidal, L. Whalley, A. J. Cowan, L. J. Hardwick, P. R. Unwin, Angew. Chem., Int. Ed. 2022, 61, e202207184.
- 38V. Shkirskiy, L. C. Yule, E. Daviddi, C. L. Bentley, J. Aarons, G. West, P. R. Unwin, J. Electrochem. Soc. 2020, 167, 041507.
- 39B. Tao, L. C. Yule, E. Daviddi, C. L. Bentley, P. R. Unwin, Angew. Chemie 2019, 131, 4654.
- 40D. Martín-Yerga, A. Costa-García, P. R. Unwin, ACS Sens. 2019, 4, 2173.
- 41D. Martín-Yerga, P. R. Unwin, D. Valavanis, X. Xu, Curr. Opin. Electrochem. 2023, 42, 101405.
- 42B. Tao, I. J. McPherson, E. Daviddi, C. L. Bentley, P. R. Unwin, ACS Sustainable Chem. Eng. 2023, 11, 1459.
- 43D. Martín-Yerga, M. Kang, P. R. Unwin, ChemElectroChem 2021, 13, 287.
- 44A. Ramos, M. Miranda-Hernández, I. González, M. Miranda-Hernández, I. González, J. Electrochem. Soc. 2001, 148, 315.
- 45D. Torres, L. Madriz, R. Vargas, B. R. Scharifker, Electrochim. Acta 2020, 354, 136705.
- 46P. Sebastián, E. Vallés, E. Gómez, Electrochim. Acta 2014, 123, 285.
- 47A. Milchev, T. Zapryanova, Electrochim. Acta 2006, 51, 2926.
- 48L. B. Coelho, D. Torres, V. Vangrunderbeek, M. Bernal, G. M. Paldino, G. Bontempi, J. Ustarroz, npj Mater. Degrad. 2023, 7, 82.
- 49L. B. Coelho, D. Torres, M. Bernal, G. M. Paldino, G. Bontempi, J. Ustarroz, Corros. Sci. 2023, 217, 111104.
- 50A. Milchev, J. Electroanal. Chem. 1998, 457, 35.
- 51J. Ustarroz, J. A. Hammons, T. Altantzis, A. Hubin, S. Bals, H. Terryn, J. Am. Chem. Soc. 2013, 135, 11550.
- 52J. Ustarroz, X. Ke, A. Hubin, S. Bals, H. Terryn, J. Phys. Chem. C 2012, 116, 2322.
- 53H. E. M. Hussein, R. J. Maurer, H. Amari, J. J. P. Peters, L. Meng, R. Beanland, M. E. Newton, J. V. Macpherson, ACS Nano 2018, 12, 7388.
- 54W. S. Kruijt, M. Sluyters-Rehbach, J. H. Sluyters, A. Milchev, J. Electroanal. Chem. 1994, 371, 13.
- 55M. E. Hyde, R. M. J. Jacobs, R. G. Compton, J. Electroanal. Chem. 2004, 562, 61.
- 56V. Tsakova, A. Milchev, J. Electroanal. Chem. 1998, 451, 211.
- 57T. J. Woehl, J. E. Evans, I. Arslan, W. D. Ristenpart, N. D. Browning, ACS Nano 2012, 6, 8599.
- 58K. Marthinsen, O. Daaland, T. Furu, E. Nes, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2003, 34, 2705.
10.1007/s11661-003-0172-3 Google Scholar
- 59A. Milchev, Electrochim. Acta 1983, 28, 947.
- 60C. Brandel, J. H. Ter Horst, Faraday Discuss. 2015, 179, 199.
- 61G. Gunawardena, G. Hills, B. Scharifker, J. Electroanal. Chem. 1981, 130, 99.
- 62A. Milchev, Electrocrystallization: Fundamentals of Nucleation and Growth, Kluwer Academic Publishers, Boston 2002.
- 63S. R. German, M. A. Edwards, H. Ren, H. S. White, J. Am. Chem. Soc. 2018, 140, 4047.
- 64N. J. Vitti, P. Majumdar, H. S. White, Langmuir 2023, 39, 1173.
- 65J. Velmurugan, J. M. Noël, M. V. Mirkin, Chem. Sci. 2014, 5, 189.
- 66J. Velmurugan, J. M. Noël, W. Nogala, M. V. Mirkin, Chem. Sci. 2012, 3, 3307.
- 67J. T. Hinatsu, F. R. Foulke, J. Electrochem. Soc. 1989, 136, 125.
- 68A. J. Bard, L. R. Faulkner, E. Swain, C. Robey, Electrochemical Methods: Fundamentals and Applications, Jonh Wiley & Sons, Hoboken, New Jersey 2001.
- 69M. E. Snowden, A. G. Güell, S. C. S. Lai, K. McKelvey, N. Ebejer, M. A. Oconnell, A. W. Colburn, P. R. Unwin, Anal. Chem. 2012, 84, 2483.
- 70B. R. Scharifker, G. Hills, Electrochim. Acta 1983, 28, 879.
- 71J. Ustarroz, New Insights on Nanoparticle Electrodeposition: An Electrochemical Aggregative Growth Mechanism, Vrije Universiteit Brussel, Brussels 2013.
- 72B. R. Scharifker, J. Mostany, in Electrochemistry Encyclopedia, Wiley, Weinheim, Germany 2003, pp. 512.
- 73B. R. Scharifker, J. Mostany, in Electrochemistry, (Eds.: D. Pletcher, T. Zhong-Qun, D. Williams), John Wiley & Sons, Chichester, UK, 2014, pp. 65–75.
- 74R. L. Deutscher, S. Fletcher, J. Electroanal. Chem. 1988, 239, 17.
- 75R. L. Deutscher, S. Fletcher, J. Electroanal. Chem. 1990, 277, 1.
- 76D. Mazaira, C. Borrás, J. Mostany, B. R. Scharifker, J. Electroanal. Chem. 2009, 631, 22.
- 77V. Tsakova, A. Milchev, J. Electroanal. Chem. Interfacial Electrochem. 1986, 197, 359.
- 78J. Mostany, B. R. Scharifker, K. Saavedra, C. Borrás, Russ. J. Electrochem. 2008, 44, 652.
- 79P. Sebastián, L. E. Botello, E. Vallés, E. Gómez, M. Palomar-Pardavé, B. R. Scharifker, J. Mostany, J. Electroanal. Chem. 2017, 793, 119.
- 80M. Palomar-Pardavé, M. T. Ramírez, I. González, A. Serruya, B. R. Scharifker, J. Electrochem. Soc. 1996, 143, 1551.
- 81J. Ustarroz, U. Gupta, A. Hubin, S. Bals, H. Terryn, Electrochem. Commun. 2010, 12, 1706.
- 82J. Ustarroz, I. M. Ornelas, G. Zhang, D. Perry, M. Kang, C. L. Bentley, M. Walker, P. R. Unwin, ACS Catal. 2018, 8, 6775.
- 83T. Quast, S. Varhade, S. Saddeler, Y. Chen, C. Andronescu, S. Schulz, W. Schuhmann, Angew. Chem., Int. Ed. 2021, 60, 23444.
- 84E. B. Tetteh, O. A. Krysiak, A. Savan, M. Kim, R. Zerdoumi, T. D. Chung, A. Ludwig, W. Schuhmann, Small Methods 2024, 8, 2301284.
- 85C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Nature 2020, 585, 357.
- 86W. McKinney, Data Structures for Statistical Computing in Python, 2010, pp. 56–61, https://doi.org/10.25080/Majora-92bf1922-00a.
10.25080/Majora?92bf1922?00a Google Scholar
- 87P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, et al., Nat. Methods 2020, 17, 261.
- 88I. Arganda-Carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin, A. Cardona, H. S. Seung, Bioinformatics 2017, 33, 2424.