Quenching as a Route to Defect-Rich Ru-Pyrochlore Electrocatalysts toward the Oxygen Evolution Reaction
Tongtong Liu
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShaoxuan Yang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorJingyu Guan
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorJin Niu
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Zhengping Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feng Wang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorTongtong Liu
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShaoxuan Yang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorJingyu Guan
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorJin Niu
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Zhengping Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Feng Wang
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Defects have a significant impact on the electrocatalysts performance. Introducing defect structures in metal oxides such as pyrochlores and perovskites has proved to be an effective strategy to enhance electrocatalytic activity. However, it is hard to build numerous defect sites in such high-temperature oxides due to the strong metal–oxygen bonds and the so-called self-purification effect, which becomes increasingly important as the particle size reduced to the nanoscale. Here, a facile strategy is demonstrated to fabricate defect-rich yttrium ruthenate oxides Y2Ru2O7−δ with the pyrochlore structure (denoted Drich-YRO) by the liquid nitrogen (<−196 °C) quenching. Owing to the almost instantaneous cooling in oxygen-deficient condition, a large number of defects—including oxygen vacancies, grain boundaries, pores and surficial disorder—are preserved in the room temperature material and act as electrocatalytic active sites for oxygen evolution. As a result, Drich-YRO shows excellent catalytic activity and high electrochemical stability, along with a high performance in the operation of proton exchange membrane electrolyzer. The quenching strategy employed in this work provides a facile approach for constructing defect-rich structures in high-temperature oxides and should lead to new applications in energy conversion and storage devices for such materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding authors. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
smtd202101156-sup-0001-SuppMat.pdf4.3 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, S. Wang, Adv. Mater. 2020, 32, 1907879.
- 2C. Xie, D. Yan, H. Li, S. Du, W. Chen, Y. Wang, Y. Zou, R. Chen, S. Wang, ACS Catal. 2020, 10, 11082.
- 3Y. Zhang, L. Guo, L. Tao, Y. Lu, S. Wang, Small Methods 2018, 3, 1800406.
- 4Z. Zhao, Q. Wang, X. Huang, Q. Feng, S. Gu, Z. Zhang, H. Xu, L. Zeng, M. Gu, H. Li, Energy Environ. Sci. 2020, 13, 5143;
- 5Z. Li, Y. Zhang, Y. Feng, C. Cheng, K. Qiu, C. Dong, H. Liu, X. Du, Adv. Funct. Mater. 2019, 29, 1903444.
- 6A. Grimaud, O. Diaz-Morales, B. Han, W. Hong, Y. Lee, L. Giordano, K. Stoerzinger, M. Koper, Y. Shao-Horn, Nat. Chem. 2017, 9, 457.
- 7S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. Mingers, W. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. Mayrhofer, M. Koper, S. Cherevko, Nat. Catal. 2018, 1, 508.
- 8A. Grimaud, A. Demortiere, M. Saubanere, W. Dachraoui, M. Duchamp, M. Doublet, J. Tarascon, Nat. Energy 2016, 2, 16189.
- 9S. Hao, M. Liu, J. Pan, X. Liu, X. Tan, N. Xu, Y. He, L. Lei, X. Zhang, Nat. Commun. 2020, 11, 5368.
- 10D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 2017, 29,1606459.
- 11W. Ni, Z. Liu, Y. Zhang, C. Ma, H. Deng, S. Zhang, S. Wang, Adv. Mater. 2021, 33, 2003238.
- 12D. Chen, M. Qiao, Y. Lu, L. Hao, D. Liu, C. Dong, Y. Li, S. Wang, Angew. Chem., Int. Ed. 2018, 57, 8691; Angew. Chem. 2018, 130, 8827.
- 13Q. Ji, L. Bi, J. Zhang, H. Cao, X. Zhao, Energy Environ. Sci. 2020, 13, 1408.
- 14L. Seitz, C. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Hwang, J. Norskov, T. Jaramillo, Science 2016, 353, 1011.
- 15M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio, A. Pereira, A. Garcia, J. Torrero, M. Fernandez-Diaz, P. Bencok, M. Pena, J. Fierro, S. Rojas, Nat. Commun. 2019, 10, 2041.
- 16J. Kim, P. C. Shih, Y. Qin, Z. Al-Bardan, C.-J. Sun, H. Yang, Angew. Chem., Int. Ed. 2018, 57, 13877; Angew. Chem. 2018, 130, 14073.
- 17Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J. Veder, D. Guan, R. O'Hayre, M. Li, G. Wang, H. Wang, W. Zhou, Z. Shao, Nat. Commun. 2020, 11, 2002.
- 18J. Suntivich, K. May, H. Gasteiger, J. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.
- 19J. Hwang, R. Rao, Y. Giordano, Y. Katayama, Y. Shao-Horn, Science 2017, 358, 751.
- 20A. Grimaud, K. May, C. Carlton, Y. Lee, M. Risch, W. Hong, J. Zhou, Y. Shao-Horn, Nat. Commun. 2013, 4, 2439.
- 21D. Kuznetsov, M. Naeem, P. Kumar, P. Abdala, A. Fedorov, C. Muller, J. Am. Chem. Soc. 2020, 142, 7883.
- 22J. Kim, P. C. Shih, K. C. Tsao, Y. T. Pan, X. Yin, C.-J. Sun, H. Yang, J. Am. Chem. Soc. 2017, 139, 12076.
- 23C. Song, J. Lim, H. Bae, S. Chung, Energy Environ. Sci. 2020, 13, 4178.
- 24J. Park, M. Park, G. Nam, M. Kim, J. Cho, Nano Lett. 2017, 17, 3974.
- 25Q. Feng, J. Zou, Y. Wang, Z. Zhao, M. C. Williams, H. Li, H. Wang, ACS Appl. Mater. Interfaces 2020, 12, 4520.
- 26Q. Feng, Q. Wang, Z. Zhang, Y. Xiong, H. Li, Y. Yao, X.-Z. Yuan, M. C. Williams, M. Gu, H. Chen, H. Li, H. Wang, Appl. Catal., B 2019, 244, 494.
- 27Q. Feng, Z. Zhao, X.-Z. Yuan, H. Li, H. Wang, Appl. Catal., B 2020, 260, 118176.
- 28Q. Feng, Z. Zhang, H. Huang, K. Yao, J. Fan, L. Zeng, M. Williams, H. Li, H. Wang, Chem. Eng. J. 2020, 395, 124428.
- 29Y. Kraftmakher, Phys. Rep. 1998, 299, 79.
- 30K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy 2020, 73,104761.
- 31K. Zhu, T. Wu, M. Li, R. Lu, X. Zhu, W. Yang, J. Mater. Chem. A 2017, 5, 19836.
- 32C. Ye, J. Liu, Q. Zhang, X. Jin, Y. Zhao, Z. Pan, G. Chen, Y. Qiu, D. Ye, L. Gu, G. I. N. Waterhouse, L. Guo, S. Yang, J. Am. Chem. Soc. 2021, 143, 14169.
- 33O. Kwon, Y. Kim, K. Kim, J. Kim, J. Lee, S. Park, J. Han, Y. Kim, G. Kim, H. Jeong, Nano Lett. 2020, 20, 8353.
- 34B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.
- 35X. Miao, L. Zhang, L. Wu, Z. Hu, L. Shi, S. Zhou, Nat. Commun. 2019, 10, 3809.
- 36P. C. Shih, J. Kim, C. J. Sun, H. Yang, ACS Appl. Energy Mater. 2018, 1, 3992.
- 37J. Park, K. Kim, H. Noh, S. Oh, J. Park, H. Lin, C. Chen, Phys. Rev. B 2004, 69, 165120.
- 38Y. Zhu, Q. Lin, Z. Hu, Y. Chen, Y. Yin, H. Tahini, H. Lin, C. Chen, X. Zhang, Z. Shao, H. Wang, Small 2020, 16, 2001204.
- 39A. Strickler, D. Higgins, T. Jaramillo, ACS Appl. Energy Mater. 2019, 2, 5490.
- 40J. Park, M. Risch, G. Nam, M. Park, T. Shin, S. Park, M. Kim, Y. Shao-Horn, J. Cho, Energy Environ. Sci. 2017, 10, 129.
- 41N. Zhang, C. Wang, J. Chen, C. Hu, J. Ma, X. Deng, B. Qiu, L. Cai, Y. Xiong, Y. Chai, ACS Nano 2021, 15, 8537.
- 42Z. Li, C. Zhou, J. Hua, X. Hong, C. Sun, H. Li, X. Xu, L. Mai, Adv. Mater. 2020, 32, 1907444.
- 43W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Y. Yin, Nano Energy 2018, 43, 110.
- 44M. Read, M. Islam, G. Watson, F. King, F. Hancock, J. Mater. Chem. 2000, 10, 2298.