Recent Advances in Flexible Zn–Air Batteries: Materials for Electrodes and Electrolytes
Haoran Liu
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorWen Xie
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorZeyi Huang
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Chuanhao Yao
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunhu Han
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wei Huang
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHaoran Liu
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorWen Xie
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorZeyi Huang
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Chuanhao Yao
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunhu Han
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wei Huang
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Flexible Zn–air batteries (ZABs) draw much attention due to the merits of high energy density, stability, and safety, and show potential applications for wearable devices. However, the development of flexible ZABs with great energy density, high round-trip efficiency, and long cycle life for practical applications is highly restricted by the lack of highly active oxygen catalysts, high ion-conducting solid-state electrolytes, appropriate Zn anodes, and advanced battery configuration. Promising oxygen catalysts should possess both, superior oxygen reduction reaction and oxygen evolution reaction performance and can be directly used as self-supporting cathodes without loading catalysts on support materials such as carbon cloth. In addition, electrolytes play an important role in ZABs; a good electrolyte should be in all-solid state with high ion conductivity. Moreover, for an excellent Zn anode, it is required to stably contact the electrolyte interface during the bending process. Therefore, in this review, recent advances in ZABs are summarized, including: i) the powder and 3D self-supporting oxygen catalysts, ii) the species of solid-state electrolytes, and iii) the rational design of Zn anodes. Finally, the challenges and opportunities of this promising field are presented.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1S. Chu, Y. Cui, N. Liu, Nat. Mater. 2016, 16, 16.
- 2S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, S. Goel, Renewable Sustainable Energy Rev. 2015, 51, 623.
- 3H. Gonenc, B. Scholtens, Ecol. Econ. 2017, 132, 307.
- 4W. Raza, F. Z. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E. E. Kwon, Nano Energy 2018, 52, 441.
- 5I. A. Gondal, S. A. Masood, M. Amjad, Renewable Sustainable Energy Rev. 2017, 71, 687.
- 6D. Aurbach, B. D. McCloskey, L. F. Nazar, P. G. Bruce, Nat. Energy 2016, 1, 16128.
- 7B. Liu, Y. Sun, L. Liu, J. Chen, B. Yang, S. Xu, X. Yan, Science 2019, 12, 887.
- 8W. I. Al Sadat, L. A. Archer, Sci. Adv. 2016, 2, e1600968.
- 9J. L. Ma, F. L. Meng, Y. Yu, D. P. Liu, J. M. Yan, Y. Zhang, X. B. Zhang, Q. Jiang, Nat. Chem. 2019, 11, 64.
- 10T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P. G. Bruce, Chem. Soc. 2006, 128, 1390.
- 11J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.
- 12Q. Sun, Y. Yang, Z.-W. Fu, Electrochem. Commun. 2012, 16, 22.
- 13Y. Li, J. Lu, ACS Energy Lett. 2017, 2, 1370.
- 14H.-F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 2018, 28, 1803329.
- 15C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang, X. Liu, Z. Liu, D. Zhao, S. J. Pennycook, J. Wang, Energy Storage Mater. 2019, 16, 243.
- 16Y. Zhang, H. Geng, W. Wei, J. Ma, L. Chen, C. C. Li, Energy Storage Mater. 2019, 20, 118.
- 17Z. Chen, Q. Wang, X. Zhang, Y. Lei, W. Hu, Y. Luo, Y. Wang, Sci. Bull. 2018, 63, 548.
- 18W. Cai, X. Zhang, J. Shi, J. Li, Z. Liu, S. Zhou, X. Jia, J. Xiong, K. Qu, Y. Huang, Catal. Commun. 2019, 127, 5.
- 19T. Wu, M. Pi, X. Wang, D. Zhang, S. Chen, Phys. Chem. 2017, 19, 2104.
- 20L. Song, T. Wang, L. Li, C. Wu, J. He, Appl. Catal. B 2019, 244, 197.
- 21Y. Dong, M. Zhou, W. Tu, E. Zhu, Y. Chen, Y. Zhao, S. Liao, Y. Huang, Q. Chen, Y. Li, Adv. Funct. Mater. 2019, 29, 1900015.
- 22D. Kong, Y. Wang, S. Huang, J. Hu, Y. V. Lim, B. Liu, S. Fan, Y. Shi, H. Y. Yang, Energy Storage Mater. 2019, 23, 653.
- 23C. Wang, N. Xie, Y. Zhang, Z. Huang, K. Xia, H. Wang, S. Guo, B. Xu, Y. Zhang, Chem. Mater. 2019, 31, 1023.
- 24Z. Q. Niu, W. Y. Zhou, X. D. Chen, J. Chen, S. S. Xie, Adv. Mater. 2015, 27, 6002.
- 25K. Xiao, L. X. Ding, G. Liu, H. Chen, S. Wang, H. Wang, Adv. Mater. 2016, 28, 5997.
- 26X. Cao, J. He, H. Li, L. P. Kang, X. X. He, J. Sun, R. B. Jiang, H. Xu, Z. B. Lei, Z. H. Liu, Small 2018, 14, 1800998.
- 27J. Wen, Q. Zhao, X. Jiang, G. Ji, R. Wang, G. Lu, J. Long, N. Hu, C. Xu, ACS Appl. Energy Mater. 2021, 4, 3660.
- 28W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu, S. Wu, H. Wu, Z. Liu, C. Guan, J. Wang, S. J. Pennycook, ACS Catal. 2018, 8, 8961.
- 29Y. Han, Y.-G. Wang, W. Chen, R. Xu, L. Zheng, J. Zhang, J. Luo, R.-A. Shen, Y. Zhu, W.-C. Cheong, C. Chen, Q. Peng, D. Wang, Y. Li, J. Am. Chem. Soc. 2017, 139, 17269.
- 30X. Y. Cai, L. F. Lai, J. Y. Lin, Z. X. Shen, Mater. Horiz. 2017, 4, 945.
- 31Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 32D. U. Lee, P. Xu, Z. P. Cano, A. G. Kashkooli, M. G. Park, Z. Chen, J. Mater. Chem. A 2016, 4, 7107.
- 33T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925.
- 34Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma, Y. Z. Su, Adv. Mater. 2016, 28, 3777.
- 35S. Gupta, W. Kellogg, H. Xu, X. Liu, J. Cho, G. Wu, Chem - Asian J. 2016, 11, 10
- 36J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang, Z. Chen, Adv. Mater. 2019, 31, 1805230.
- 37Q. Lu, J. Yu, X. H. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, Adv. Funct. Mater. 2019, 29, 1904481.
- 38R. A. Sidik, A. B. Anderson, J. Phys. Chem. B 2006, 110, 936.
- 39X. Rui, H. Tan, Q. Yan, Nanoscale 2014, 6, 9889.
- 40X. Li, J. Wei, Q. Li, S. Zheng, Y. Xu, P. Du, C. Chen, J. Zhao, H. Xue, Q. Xu, H. Pang, Adv. Funct. Mater. 2018, 28, 1800886.
- 41M. Sun, H. Liu, J. Qu, J. Li, Adv. Energy Mater. 2016, 6, 1600087.
- 42C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem., Int. Ed. 2017, 56, 13944.
- 43H. Zhang, M. Zhao, H. Liu, S. Shi, Z. Wang, B. Zhang, L. Song, J. Shang, Y. Yang, C. Ma, L. Zheng, Y. Han, W. Huang, Nano Lett. 2021, 21, 2255.
- 44Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu, J. Qian, Y. Dou, J. Qiu, S. Zhang, Nano-Micro Lett. 2021, 13, 3.
- 45L. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R. S. Ruoff, Energy Environ. Sci. 2012, 5, 7936.
- 46C. G. Hu, L. Dai, Adv. Mater. 2017, 29, 1604942.
- 47W. W. Liu, B. H. Ren, W. Y. Zhang, M. W. Zhang, G. R. Li, M. Xiao, J. Zhu, A. Yu, L. Ricardez-Sandoval, Z. Chen, Small 2019, 15, 1903610.
- 48J. Y. Zhang, X. W. Bai, T. T. Wang, W. Xiao, P. X. Xi, J. Wang, D. Gao, J. Wang, Nano-Microlett. 2019, 11, 2.
- 49S. Fu, C. Zhu, J. Song, S. Feng, D. Du, M. H. Engelhard, D. Xiao, D. Li, Y. Lin, ACS Appl. Mater. Interfaces 2017, 9, 36755.
- 50G. Liu, J. Li, J. Fu, G. Jiang, G. Lui, D. Luo, Y.-P. Deng, J. Zhang, Z. P. Cano, A. Yu, D. Su, Z. Bai, L. Yang, Z. Chen, Adv. Mater. 2019, 31, 1806761.
- 51P. Wang, C. Li, S. Dong, X. Ge, P. Zhang, X. Miao, R. Wang, Z. Zhang, L. Yin, Adv. Energy Mater. 2019, 9, 1900788.
- 52T. Zhou, W. Xu, N. Zhang, Z. Du, C. Zhong, W. Yan, H. Ju, W. Chu, H. Jiang, C. Wu, Y. Xie, Adv. Mater. 2019, 31, 1807468.
- 53W. Peng, Y. Wang, X. Yang, L. Mao, J. Lin, S, Yang, K. Fu, G. Li, Appl. Catal. B 2020, 268, 118437.
- 54B. Chen, Z. Jiang, L. Zhou, B. Deng, Z.-J. Jiang, J. Huang, M. Liu, J. Power Sources 2018, 389, 178.
- 55K. Tang, C. Yuan, Y. Xiong, H. Hu, M. Wu, Appl. Catal. B 2020, 260, 118209.
- 56H. Miao, B. Chen, S. Li, X. Wu, Q. Wang, C. Zhang, Z. Sun, H. Li, J. Power Sources 2020, 450, 227653.
- 57S. Bag, K. Roy, C. S. Gopinath, C. R. Raj, ACS Appl. Mater. Interfaces 2014, 6, 2692.
- 58R. K. Gautam, H. Bhattacharjee, S. V. Mohan, A. Verma, RSC Adv. 2016, 6, 110091.
- 59R. Chen, J. Yan, Y. Liu, J. Li, J. Phys. Chem. C 2015, 119, 8032.
- 60N. Xu, Y. Zhang, M. Wang, X. Fan, T. Zhang, L. Peng, X.-D. Zhou, J. Qiao, Nano Energy 2019, 65, 104021.
- 61D. Lim, H. Kong, N. Kim, C. Lim, W.-S. Ahn, S.-H. Baeck, ChemNanoMat 2019, 5, 1296.
- 62X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, T. Ma, Z.-Q. Liu, Angew. Chem., Int. Ed. 2019, 58, 13291.
- 63B. Chen, H. Miao, M. Yin, R. Hu, L. Xia, C. Zhang, J. Yuan, Chem. Eng. J. 2021, 417, 129179.
- 64J. Balamurugan, T. T. Nguyen, D. H. Kim, N. H. Kim, J. H. Lee, Appl. Catal. B 2021, 286, 119909.
- 65J. Qian, J. Li, B. Xia, J. Zhang, Z. Zhang, C. Guan, D. Gao, W. Huang, Energy Storage Mater. 2021, 42, 470.
- 66Y. Xiong, Y. Yang, X. Feng, F. J. DiSalvo, H. D. Abruna, J. Am. Chem. Soc. 2019, 141, 4412.
- 67Z. Wu, R. Liu, J. Wang, J. Zhu, W. Xiao, C. Xuan, W. Lei, D. Wang, Nanoscale 2016, 8, 19086.
- 68X. F. Lu, Y. Chen, S. Wang, S. Gao, X. W. Lou, Adv. Mater. 2019, 31, 1902339.
- 69Z. Du, P. Yu, L. Wang, C. Tian, X. Liu, G. Zhang, H. Fu, Sci. China Mater. 2020, 63, 327.
- 70L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang, F. Mo, Q. Yang, J. Su, Y. Gao, J. A. Zapien, C. Zhi, ACS Nano 2018, 12, 1949.
- 71M. Qiao, Y. Wang, Q. Wang, G. Hu, X. Mamat, S. Zhang, S. Wang, Angew. Chem., Int. Ed. 2020, 59, 2688.
- 72Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2017, 56, 6937.
- 73D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem., Int. Ed. 2013, 52, 371.
- 74G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443.
- 75L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D. Liu, Science 2018, 362, 1276.
- 76L. Zong, X. Chen, S. Liu, K. Fan, S. Dou, J. Xu, X. Zhao, W. Zhang, Y. Zhang, W. Wu, F. Lu, L. Cui, X. Jia, Q. Zhang, Y. Yang, J. Zhao, X. Li, Y. Deng, L. Wang, J. Energy Chem. 2021, 56, 72.
- 77X. Zhao, S. C. Abbas, Y. Huang, J. Lv, M. Wu, Y. Wang, Adv. Mater. Interfaces 2018, 5, 1701448.
- 78Z. Pei, Y. Huang, Z. Tang, L. Ma, Z. Liu, Q. Xue, Z. Wang, H. Li, Y. Chen, C. Zhi, Energy Storage Mater. 2019, 20, 234.
- 79J. Han, X. Meng, L. Lu, J. Bian, Z. Li, C. Sun, Adv. Funct. Mater. 2019, 29, 1808872.
- 80W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao, X. Xue, X. Liu, W. Bai, K. Wang, Q. Xu, J. Zhang, Appl. Catal. B 2020, 260, 118198.
- 81Y. Meng, J.-C. Li, S.-Y. Zhao, C. Shi, X.-Q. Li, L. Zhang, P.-X. Hou, C. Liu, H.-M. Cheng, Appl. Catal. B 2021, 294, 120239.
- 82Z. Zhang, X. Zhao, S. Xi, L. Zhang, Z. Chen, Z. Zeng, M. Huang, H. Yang, B. Liu, S. J. Pennycook, P. Chen, Adv. Energy Mater. 2020, 10, 2002896.
- 83G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, W. Liu, J. Liu, X. Sun, W. F. Lin, H. Dai, Energy Environ. Sci. 2019, 12, 1317.
- 84Y. Yang, Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu, D. Do, B. Zhou, J. Dong, W. Yan, Y. Qin, L. Fang, R. Feng, J. Zhou, P. Zhang, J. Dong, G. Yu, Y. Liu, X. Zhang, X. Zhang, X. Fan, X. Fan, Sci. Adv. 2020, 6, eaba6586.
- 85J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu, T. Ma, Adv. Mater. 2020, 32, 2003134.
- 86J. Wang, W. Liu, G. Luo, Z. Li, C. Zhao, H. Zhang, M. Zhu, Q. Xu, X. Wang, C. Zhao, Y. Qu, Z. Yang, T. Yao, Y. Li, Y. Lin, Y. Wu, Y. Li, Energy Environ. Sci. 2018, 11, 3375.
- 87D. Chen, J. Zhu, X. Mu, R. Cheng, W. Li, S. Liu, Z. Pu, C. Lin, S. Mu, Appl. Catal. B 2020, 268, 118729.
- 88C. Lai, J. Wang, W. Lei, C. Xuan, W. Xiao, T. Zhao, T. Huang, L. Chen, Y. Zhu, D. Wang, ACS Appl. Mater. Interfaces 2018, 10, 38093.
- 89C. Li, M. Wu, R. Liu, Appl. Catal. B 2019, 244, 150.
- 90F. Yang, J. Xie, D. Rao, X. Liu, J. Jiang, X. Lu, Nano Energy 2021, 85, 106020.
- 91S. S. Shinde, C. H. Lee, J.-Y. Jung, N. K. Wagh, S.-H. Kim, D.-H. Kim, C. Lin, S. U. Lee, J.-H. Lee, Energy Environ. Sci. 2019, 12, 727.
- 92U. B. Demirci, J. Power Sources 2007, 173, 11.
- 93M. Shao, K. Sasaki, N. S. Marinkovic, L. Zhang, R. R. Adzic, Electrochem. Commun. 2007, 9, 2848.
- 94J. Greeley, M. Mavrikakis, Nat. Mater. 2004, 3, 810.
- 95M. H. Shao, P. Liu, J. Zhang, R. Adzic, J. Phys. Chem. B 2007, 111, 6772.
- 96Y. Liang, H. Lei, S. Wang, Z. Wang, W. Mai, Sci. China Mater. 2021, 64, 1868.
- 97K. Wang, W. Wu, Z. Tang, L. Li, S. Chen, N. M. Bedford, ACS Appl. Mater. Interfaces 2019, 11, 4983.
- 98S. M. Alia, S. Pylypenko, K. C. Neyerlin, D. A. Cullen, S. S. Kocha, B. S. Pivovar, ACS Catal. 2014, 4, 2680.
- 99S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C.-Y. Chiang, W. Zhou, J. Zhao, J. Qiu, Adv. Mater. 2017, 29, 1700874.
- 100M. Wu, J. Qiao, K. Li, X. Zhou, Y. Liu, J. Zhang, Green Chem. 2016, 18, 2699.
- 101M. Wu, Q. Tang, F. Dong, Z. Bai, L. Zhang, J. Qiao, J. Catal. 2017, 352, 208.
- 102J. Wang, H.-X. Zhong, Y.-L. Qin, X.-B. Zhang, Angew. Chem., Int. Ed. 2013, 52, 5248.
- 103T. Y. Ma, S. Dai, S. Z. Qiao, Mater. Today 2016, 19, 265.
- 104Y. Zhao, X. Li, X. Jia, S. Gao, Nano Energy 2019, 58, 384.
- 105J. Qin, Z. Liu, D. Wu, J. Yang, Appl. Catal. B 2020, 278, 119300.
- 106J. Ren, Z. Hu, C. Chen, Y. Liu, Z. Yuan, J. Energy Chem. 2017, 26, 1196.
- 107B. Wang, C. Tang, H. F. Wang, B. Q. Li, X. Cui, Q. Zhang, Small Methods 2018, 2, 1800055.
- 108P. Ramakrishnan, S.-H. Baek, Y. Park, J. H. Kim, Carbon 2017, 115, 249.
- 109Y. An, B. Huang, Z. Wang, X. Long, Y. Qiu, J. Hu, D. Zhou, H. Lin, S. Yang, Dalton Trans. 2017, 46, 10700.
- 110X. Li, Y. Zhao, Y. Yang, S. Gao, Nano Energy 2019, 62, 628.
- 111S.-Y. Lu, M. Jin, Y. Zhang, Y.-B. Niu, J.-C. Gao, C. M. Li, Adv. Energy Mater. 2018, 8, 1702545.
- 112X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao, W. Hu, Y. Deng, Adv. Mater. 2019, 31, 1808281.
- 113M. Wu, G. Zhang, N. Chen, W. Chen, J. Qiao, S. Sun, Energy Storage Mater. 2020, 24, 272.
- 114Q. Jin, B. Ren, J. Chen, H. Cui, C. Wang, Appl. Catal. B 2019, 256, 117887.
- 115N. K. Wagh, D.-H. Kim, S.-H. Kim, S. S. Shinde, J.-H. Lee, ACS Nano 2021, 15, 14683.
- 116C. Lai, J. Fang, X. Liu, M. Gong, T. Zhao, T. Shen, K. Wang, K. Jiang, D. Wang, Appl. Catal. B 2021, 285, 119856.
- 117N. Xu, J. A. Wilson, Y.-D. Wang, T. Su, Y. Wei, J. Qiao, X.-D. Zhou, Y. Zhang, S. Sun, Appl. Catal. B 2020, 272, 118953.
- 118Z. Pan, J. Yang, W. Zang, Z. Kou, C. Wang, X. Ding, C. Guan, T. Xiong, H. Chen, Q. Zhang, Y. Zhong, M. Liu, L. Xing, Y. Qiu, W. Li, C. Yan, Y. Zhang, J. Wang, Energy Storage Mater. 2019, 23, 375.
- 119Z. Pan, H. Chen, J. Yang, Y. Ma, Q. Zhang, Z. Kou, X. Ding, Y. Pang, L. Zhang, Q. Gu, C. Yan, J. Wang, Adv. Sci. 2019, 6, 1900628.
- 120B. Yuan, G. Nam, P. Li, S. Wang, H. Jang, T. Wei, Q. Qin, X. Liu, J. Cho, J. Power Sources 2019, 421, 109.
- 121Y. Liu, X. Teng, S. Gong, M. Xu, S.-G. Sun, Z. Chen, Nano-Micro Lett. 2021, 13, 126.
- 122K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou, T. Li, C. Jiang, Y. Chen, X. Peng, J. Lu, Adv. Mater. 2020, 32, 2002292.
- 123Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou, J. Qiu, H. Li, J. Ma, Y. Wang, D. Su, S. Zhang, Adv. Funct. Mater. 2021, 31, 2101239.
- 124J. Qian, T. Wang, Z. Zhang, Y. Liu, J. Li, D. Gao, Nano Energy 2020, 74, 104948.
- 125H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Angew. Chem., Int. Ed. 2021, 60, 598.
- 126M. Jiang, J. Zhu, C. Chen, Y. Lu, Y. Ge, X. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 3473.
- 127K. F. Tjhung, P. I. Kitov, S. Ng, E. N. Kitova, L. Deng, J. S. Klassen, R. Derda, J. Am. Chem. Soc. 2016, 138, 32.
- 128J. Fu, J. Zhang, X. Song, H. Zarrin, X. Tian, J. Qiao, L. Rasen, K. Li, Z. Chen, Energy Environ. Sci. 2016, 9, 663.
- 129M. Wang, N. Xu, J. Fu, Y. Liu, J. Qiao, J. Mater. Chem. A 2019, 7, 11257.
- 130K. He, J. Zai, X. Liu, Y. Zhu, A. lqbal, T. T. Tsega, Y. Zhang, N. Ali, X. Qian, Appl. Catal. B 2020, 265, 118594.
- 131L. Yan, Z. Xu, W. Hu, J. Ning, Y. Zhong, Y. Hu, Nano Energy 2021, 82, 105710.
- 132F. Pereira, K. Vallé, P. Belleville, A. Morin, S. Lambert, C. Sanchez, Chem. Mater. 2008, 20, 1710.
- 133H. Gao, K. Lian, ACS Appl. Mater. Interfaces 2014, 6, 464.
- 134X. Fan, J. Liu, Z. Song, X. Han, Y. Deng, C. Zhong, W. Hu, Nano Energy 2019, 56, 454.
- 135M. Li, B. Liu, X. Fan, X. Liu, J. Liu, J. Ding, X. Han, Y. Deng, W. Hu, C. Zhong, ACS Appl. Mater. Interfaces 2019, 11, 28909.
- 136X. Chen, H. Lin, P. Chen, G. Guan, J. Deng, H. Peng, Adv. Mater. 2014, 26, 4444.
- 137Y. Xu, Y. Zhao, J. Ren, Y. Zhang, H. Peng, Angew. Chem., Int. Ed. 2016, 55, 7979.
- 138S. Wang, X. Liu, A. Wang, Z. Wang, J. Chen, Q. Zeng, X. Jiang, H. H. Zhou, L. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 25273.
- 139X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Adv. Energy Mater. 2018, 8, 1702184.
- 140Y. Chen, S. Hu, F. Nichols, F. Bridges, S. Kan, T. He, Y. Zhang, S. Chen, J. Mater. Chem. A 2020, 8, 11649.
- 141L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang, J. Zhu, M. Yu, Y. Tong, X. Lu, Adv. Mater. 2018, 30, 1805268.
- 142H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Tang, Y. Wang, B. Li, C. Zhi, ACS Nano 2018, 12, 3140.
- 143Y. Huang, M. Zhong, F. Shi, X. Liu, Z. Tang, Y. Wang, Y. Huang, H. Hou, X. Xie, C. Zhi, Angew. Chem., Int. Ed. 2017, 56, 9141.
- 144Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C. Zhi, Nat. Commun. 2015, 6, 10310.
- 145L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo, G. Liang, N. Li, H. Zhang, J. A. Zapien, C. Zhi, Adv. Energy Mater. 2019, 9, 1803046.
- 146J. Park, M. Park, G. Nam, J.-S. Lee, J. Cho, Adv. Mater. 2015, 27, 1396.
- 147J. Fu, D. U. Lee, F. M. Hassan, L. Yang, Z. Bai, M. G. Park, Z. Chen, Adv. Mater. 2015, 27, 5617.
- 148J. Zhang, J. Fu, X. Song, G. Jiang, H. Zarrin, P. Xu, K. Li, A. Yu, Z. Chen, Adv. Energy Mater. 2016, 6, 1600476.
- 149W. Wang, M. Tang, Z. Zheng, S. Chen, Adv. Energy Mater. 2019, 9, 1803628.
- 150Z. Cao, H. Hu, M. Wu, K. Tang, T. Jiang, J. Mater. Chem. A 2019, 7, 17581.
- 151D. Liu, B. Wang, H. Li, S. Huang, M. Liu, J. Wang, Q. Wang, J. Zhang, Y. Zhao, Nano Energy 2019, 58, 277.
- 152N. Xu, Y. Zhang, T. Zhang, Y. Liu, J. Qiao, Nano Energy 2019, 57, 176.
- 153J. Zhao, H. Hu, W. Fang, Z. Bai, W. Zhang, M. Wu, J. Mater. Chem. A 2021, 9, 5097.