Flexible Zinc–Air Battery with High Energy Efficiency and Freezing Tolerance Enabled by DMSO-Based Organohydrogel Electrolyte
Dingqing Jiang
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorHongyang Wang
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorShuang Wu
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Xiaoyi Sun
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Juan Li
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDingqing Jiang
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorHongyang Wang
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorShuang Wu
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Xiaoyi Sun
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Juan Li
Hunan Provincial Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
With the emergence of various flexible electronics, the flexible zinc–air battery (ZAB) is considered a promising energy source with low cost, high energy density, and safety. However, gel electrolytes that improve the freezing tolerance and energy efficiency of ZABs are rarely explored. Herein, an organohydrogel electrolyte (OHE) is fabricated by soaking poly(2-acrylamido-2-methylpropanesulfonic acid)/polyacrylamide (PAMPS/PAAm) double-network hydrogel in aqueous KOH electrolyte with dimethyl sulfoxide (DMSO) additive. The prepared OHE exhibits high mechanical strength and excellent ionic conductivity. In addition, the introduction of DMSO effectively improves freezing tolerance and electrochemical performance especially in energy efficiency of ZABs due to that DMSO can break the hydrogen bonds between water molecules and alter the path of the conventional oxygen evolution reaction in ZAB simultaneously. Compared with the control hydrogel electrolyte, the optimized OHE enables flexible ZABs to not only exhibit an exceptionally low charge voltage of 1.63 V, high energy efficiency of 74.2%, and long cycling life of 177 cycles, but also to operate with an excellent specific capacity of 562 mAh g−1 and energy density of 523.4 Wh kg−1 at −40 °C. Moreover, the obtained flexible ZABs keep a stable output under deformations and extreme low temperature, manifesting a great potential for functional wearable devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202101043-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
smtd202101043-sup-0002-MovieS1.mp47.7 MB | Supporting Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. A. Hashemi, S. Ramakrishna, A. G. Aberle, Energy Environ. Sci. 2020, 13, 685; b) Y. Yang, W. Gao, Chem. Soc. Rev. 2019, 48, 1465; c) D. Zhou, L. P. Xue, L. Wang, N. Wang, W. M. Lau, X. Cao, Nano Energy 2019, 61, 435.
- 2Y. G. Zhang, Y. P. Deng, J. Y. Wang, Y. Jiang, G. L. Cui, L. L. Shui, A. P. Yu, X. Wang, Z. W. Chen, Energy Storage Mater. 2021, 35, 538.
- 3J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.
- 4a) J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang, Z. Chen, Adv. Mater. 2019, 31, 1805230; b) Y. H. Zhu, X. Y. Yang, T. Liu, X. B. Zhang, Adv. Mater. 2020, 32, 1901961; c) Y. P. Deng, R. L. Liang, G. P. Jiang, Y. Jiang, A. P. Yu, Z. W. Chen, ACS Energy Lett. 2020, 5, 1665.
- 5a) Y. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257; b) S. Clark, A. R. Mainar, E. Iruin, L. C. Colmenares, J. A. Blazquez, J. R. Tolchard, Z. Jusys, B. Horstmann, Adv. Energy Mater. 2020, 10, 1903470; c) W. Sun, F. Wang, B. Zhang, M. Zhang, V. Kupers, X. Ji, C. Theile, P. Bieker, K. Xu, C. Wang, M. Winter, Science 2021, 371, 46.
- 6F. N. Mo, Z. Chen, G. J. Liang, D. H. Wang, Y. W. Zhao, H. F. Li, B. B. Dong, C. Y. Zhi, Adv. Energy Mater. 2020, 10, 2000035.
- 7a) L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo, G. Liang, N. Li, H. Zhang, J. A. Zapien, C. Zhi, Adv. Energy Mater. 2019, 9, 1803046; b) D. Ji, L. Fan, L. Li, N. Mao, X. Qin, S. Peng, S. Ramakrishna, Carbon 2019, 142, 379; c) J. Park, M. Park, G. Nam, J. S. Lee, J. Cho, Adv. Mater. 2015, 27, 1396.
- 8a) Y. N. Liu, H. L. Li, X. Wang, T. Lv, K. Y. Dong, Z. L. Chen, Y. L. Yang, S. K. Cao, T. Chen, J. Mater. Chem. A 2021, 9, 12051; b) M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao, L. Liu, Y. Li, K. Zhang, O. G. Schmidt, Adv. Funct. Mater. 2019, 30, 1907218; c) J. B. Yang, Z. Xu, J. J. Wang, L. G. Gai, X. X. Ji, H. H. Jiang, L. B. Liu, Adv. Funct. Mater. 2021, 31, 2009438.
- 9a) X. P. Morelle, W. R. Illeperuma, K. Tian, R. Bai, Z. Suo, J. J. Vlassak, Adv. Mater. 2018, 30, 1801541; b) N. Sun, F. Lu, Y. Yu, L. Su, X. Gao, L. Zheng, ACS Appl. Mater. Interfaces 2020, 12, 11778.
- 10a) Y. Zhu, L. Lin, Y. Chen, Y. Song, W. Lu, Y. Guo, ACS Appl. Mater. Interfaces 2020, 12, 56470; b) X. Liu, Q. Zhang, G. Gao, ACS Nano 2020, 14, 13709.
- 11R. Chen, X. B. Xu, S. Y. Peng, J. M. Chen, D. F. Yu, C. H. Xiao, Y. L. Li, Y. T. Chen, X. F. Hu, M. J. Liu, H. Yang, I. Wyman, X. Wu, ACS Sustainable Chem. Eng. 2020, 8, 11501.
- 12Y. Zhang, H. Qin, M. Alfred, H. Ke, Y. Cai, Q. Wang, F. Huang, B. Liu, P. Lv, Q. Wei, Energy Storage Mater. 2021, 42, 88.
- 13D. Lou, C. Wang, Z. He, X. Sun, J. Luo, J. Li, Chem. Commun. 2019, 55, 8422.
- 14a) K. N. Dinh, Z. X. Pei, Z. W. Yuan, V. C. Hoang, L. Wei, Q. W. Huang, X. Z. Liao, C. T. Liu, Y. Chen, Q. Y. Yan, J. Mater. Chem. A 2020, 8, 7297; b) H. Lei, Z. Wang, F. Yang, X. Huang, J. Liu, Y. Liang, J. Xie, M. S. Javed, X. Lu, S. Tan, W. Mai, Nano Energy 2020, 68, 104293.
- 15H. Zhang, Z. Qu, H. M. Tang, X. Wang, R. Koehler, M. H. Yu, C. Gerhard, Y. Yin, M. S. Zhu, K. Zhang, O. G. Schmidt, ACS Energy Lett. 2021, 6, 2491.
- 16Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei, L. Wei, J. Chen, C. Wang, R. Qi, Z. Liu, Y. Chen, Angew. Chem., Int. Ed. 2020, 59, 4793.
- 17a) X. Liu, G. Zhang, L. Wang, H. Fu, Small 2021, 2006766, https://doi.org/10.1002/smll.202006766; b) Y. A. Zhang, Y. J. Chen, X. Li, M. Alfred, D. W. Li, F. L. Huang, Q. F. Wei, J. Power Sources 2021, 482, 228963.
- 18Z. Song, J. Ding, B. Liu, X. Liu, X. Han, Y. Deng, W. Hu, C. Zhong, Adv. Mater. 2020, 32, 1908127.
- 19Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng, Y. Zhang, Z. Tao, J. Chen, Angew. Chem., Int. Ed. 2019, 58, 16994.
- 20J. E. Lovelock, M. W. Bishop, Nature 1959, 183, 1394.
- 21a) D. Xu, Z. L. Wang, J. J. Xu, L. L. Zhang, X. B. Zhang, Chem. Commun. 2012, 48, 6948; b) B. Sun, X. Huang, S. Chen, J. Zhang, G. Wang, RSC Adv. 2014, 4, 11115.
- 22S. Hosseini, A. Abbasi, L. O. Uginet, N. Haustraete, S. Praserthdam, T. Yonezawa, S. Kheawhom, Sci. Rep. 2019, 9, 14958.
- 23a) L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X. Q. Yang, C. Wang, J. Am. Chem. Soc. 2020, 142, 21404; b) M. Xu, D. G. Ivey, W. Qu, Z. Xie, J. Power Sources 2014, 252, 327.
- 24a) A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W. Schuhmann, M. Muhler, Angew. Chem., Int. Ed. 2016, 55, 4087; b) X. W. Zhong, W. D. Yi, Y. J. Qu, L. Z. Zhang, H. Y. Bai, Y. M. Zhu, J. Wan, S. Chen, M. Yang, L. Huang, M. Gu, H. Pan, B. M. Xu, Appl. Catal. B 2020, 260, 118188.
- 25J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
- 26L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao, D. Qiu, Adv. Mater. 2020, 32, 2004579.
- 27Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612.
- 28H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today 2016, 11, 601.
- 29a) P. Gu, M. B. Zheng, Q. X. Zhao, X. Xiao, H. G. Xue, H. Pang, J. Mater. Chem. A 2017, 5, 7651; b) F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543.
- 30M. Christy, A. Arul, A. Zahoor, K. U. Moon, M. Y. Oh, A. M. Stephan, K. S. Nahm, J. Power Sources 2017, 342, 825.
- 31a) S. Y. Zhao, Y. Y. Zuo, T. Liu, S. Zhai, Y. W. Dai, Z. J. Guo, Y. Wang, Q. J. He, L. C. Xia, C. Y. Zhi, J. Bae, K. L. Wang, M. Ni, Adv. Energy Mater. 2021, 11, 2101749; b) Q. S. Nian, X. R. Zhang, Y. Z. Feng, S. Liu, T. J. Sun, S. B. Zheng, X. D. Ren, Z. L. Tao, D. H. Zhang, J. Chen, ACS Energy Lett. 2021, 6, 2174.
- 32S. Moller, S. Barwe, J. Masa, D. Wintrich, S. Seisel, H. Baltruschat, W. Schuhmann, Angew. Chem., Int. Ed. 2020, 59, 1585.