Surface-Engineered Homostructure for Enhancing Proton Transport
Faze Wang
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorEnyi Hu
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorHao Wu
Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 China
Search for more papers by this authorMuhammad Yousaf
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorZheng Jiang
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorLi Fang
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorCorresponding Author
Jun Wang
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJung-Sik Kim
Department of Aero & Auto Engineering, Loughborough University, Loughborough, LE11 3TU UK
Search for more papers by this authorCorresponding Author
Bin Zhu
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorFaze Wang
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorEnyi Hu
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorHao Wu
Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 China
Search for more papers by this authorMuhammad Yousaf
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorZheng Jiang
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorLi Fang
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
Search for more papers by this authorCorresponding Author
Jun Wang
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJung-Sik Kim
Department of Aero & Auto Engineering, Loughborough University, Loughborough, LE11 3TU UK
Search for more papers by this authorCorresponding Author
Bin Zhu
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy & Environment, Southeast University, Nanjing, 210096 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Ultra-wide bandgap semiconductor samarium oxide attracts great interest because of its high stability and electronic properties. However, the ionic transport properties of Sm2O3 have rarely been studied. In this work, Ni doping is proposed to be used for electronic structure engineering of Sm2O3. The formation of Ni-doping defects lowers the Fermi level to induce a local electric field, which greatly enhances the proton transport at the surface. Furthermore, ascribed to surface modification, the high concentration of vacancies and lattice disorder on the surface layer promote proton transport. A high-performance of 1438 mW cm–2 and ionic conductivity of 0.34 S cm–1 at 550 °C have been achieved using 3% mol Ni doped Sm2O3 as electrolyte for fuel cells. The well-dispersed Ni doped surface in Sm2O3 builds up continuous surfaces as proton channels for high-speed transport. In this work, a new methodology is presented to develop high-performance, low-temperature ceramic fuel cells.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202100901-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Y. Zhang, J. Liu, M. Singh, E. Hu, Z. Jiang, R. Raza, F. Wang, J. Wang, F. Yang, B. Zhu, Nano-Micro Lett. 2020, 12, 178; b) E. Hu, Z. Jiang, L. Fan, M. Singh, F. Wang, R. Raza, M. Sajid, J. Wang, J.-S. Kim, B. Zhu, iScience 2021, 24, 102191.
- 2R. Lan, S. Tao, Adv. Energy Mater. 2014, 4, 1301683.
- 3Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, M. Tsuchiya, D. D. Fong, S. Ramanathan, Nature 2016, 534, 231.
- 4a) G. Chen, B. Zhu, H. Deng, Y. Luo, W. Sun, H. Liu, W. Zhang, X. Wang, Y. Qian, X. Hu, S. Geng, J.-S. Kim, ACS Appl. Mater. Interfaces 2018, 10, 33179; b) G. Chen, H. Liu, Y. He, L. Zhang, M. I. Asghar, S. Geng, P. D. Lund, J. Mater. Chem. A 2019, 7, 9638.
- 5W. Dong, Y. Tong, B. Zhu, H. Xiao, L. Wei, C. Huang, B. Wang, X. Wang, J.-S. Kim, H. Wang, J. Mater. Chem. A 2019, 7, 16728.
- 6Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi, S. Yun, M. Akbar, B. Wang, J.-S. Kim, B. Zhu, ACS Energy Lett. 2019, 4, 2601.
- 7a) R. M. Ormerod, Chem. Soc. Rev. 2003, 32, 17; b) E. D. Wachsman, K. T. Lee, Science 2011, 334, 935; c) J. B. Goodenough, Nature 2000, 404, 821.
- 8E. Olsson, Q. Cai, J. Cottom, R. Jakobsen, A. L. Shluger, Comput. Mater. Sci. 2019, 169, 109119.
- 9F.-H. Chen, J.-L. Her, M.-N. Hung, T.-M. Pan, Appl. Phys. Lett. 2013, 103, 033517.
- 10a) X. Zheng, X. Li, H. Peng, J. Wen, J. Phys. Chem. Solids 2018, 123, 206; b) B. Renganathan, D. Sastikumar, R. Srinivasan, A. R. Ganesan, Mater. Sci. Eng., B 2014, 186, 122; c) S. Rasouli Jamnani, H. Milani Moghaddam, S. G. Leonardi, N. Donato, G. Neri, Appl. Surf. Sci. 2019, 487, 793; d) J. Ilsemann, A. Sonström, T. M. Gesing, R. Anwander, M. Bäumer, ChemCatChem 2019, 11, 1732.
- 11O. Kiyoshi, L. Qin, H. Masaharu, M. Akira, Chem. Lett. 1986, 15, 467.
- 12N. W. Gray, A. Tiwari, J. Appl. Phys. 2011, 110, 033903.
- 13F.-H. Chen, J.-L. Her, S. Mondal, M.-N. Hung, T.-M. Pan, Appl. Phys. Lett. 2013, 102, 193515.
- 14C. Xia, Y. Mi, B. Wang, B. Lin, G. Chen, B. Zhu, Nat. Commun. 2019, 10, 1707.
- 15T. Liu, Zhang, S. Li, Langmuir 2003, 19, 7569.
- 16M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, A. P. Singh, J. Mater. Chem. A 2016, 4, 2670.
- 17S. Singkammo, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, V. Yodsri, C. Liewhiran, Appl. Surf. Sci. 2018, 454, 30.
- 18a) S.-J. Park, J.-P. Lee, J. S. Jang, H. Rhu, H. Yu, B. Y. You, C. S. Kim, K. J. Kim, Y. J. Cho, S. Baik, W. Lee, Nanotechnology 2013, 24, 295202; b) X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 2014, 4, 4596.
- 19Y. Liu, L. Fan, Y. Cai, W. Zhang, B. Wang, B. Zhu, ACS Appl. Mater. Interfaces 2017, 9, 23614.
- 20a) S. R. Jamnani, H. M. Moghaddam, S. G. Leonardi, G. Neri, Synth. Met. 2020, 268, 116493; b) S. Jiang, J. Liu, C. Lin, X. Li, Y. Li, J. Appl. Phys. 2013, 113, 113502; c) T. Hongo, K.-i. Kondo, K. G. Nakamura, T. Atou, J. Mater. Sci. 2007, 42, 2582.
- 21a) W. Sun, M. Liu, W. Liu, Adv. Energy Mater. 2013, 3, 1041; b) B. Wang, Y. Wang, L. Fan, Y. Cai, C. Xia, Y. Liu, R. Raza, P. A. Van Aken, H. Wang, B. Zhu, J. Mater. Chem. A 2016, 4, 15426.
- 22Z. Qiao, C. Xia, Y. Cai, M. Afzal, H. Wang, J. Qiao, B. Zhu, J. Power Sources 2018, 392, 33.
- 23D. Han, K. Goto, M. Majima, T. Uda, ChemSusChem 2021, 14, 614.
- 24a) N. Agmon, Chem. Phys. Lett. 1995, 244, 456; b) T. E. DeCoursey, V. V. Cherny, J. Gen. Physiol. 1997, 109, 415.
- 25K.-D. Kreuer, Chem. Mater. 1996, 8, 610.
- 26B. Wang, B. Zhu, S. Yun, W. Zhang, C. Xia, M. Afzal, Y. Cai, Y. Liu, Y. Wang, H. Wang, NPG Asia Mater 2019, 11, 51.
- 27a) T. Xia, W. Zhang, J. Murowchick, G. Liu, X. Chen, Nano Lett. 2013, 13, 5289; b) G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen, Z. Wang, A. Pan, S. Liang, ACS Nano 2019, 13, 5635; c) C. Zhang, F. Han, F. Wang, Q. Liu, D. Zhou, F. Zhang, S. Xu, C. Fan, X. Li, J. Liu, Energy Storage Mater. 2020, 24, 208; d) C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang, C. Wang, Y. Lu, L. Yin, Energy Environ. Sci. 2018, 11, 3201.