Improving Na/Na3Zr2Si2PO12 Interface via SnOx/Sn Film for High-Performance Solid-State Sodium Metal Batteries
Jiayi Yang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Henghui Xu
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorJingyi Wu
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorZhonghui Gao
Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorFei Hu
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorYing Wei
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorYuyu Li
Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei, 430074 China
Search for more papers by this authorDezhong Liu
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Zhen Li
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yunhui Huang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorJiayi Yang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Henghui Xu
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorJingyi Wu
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorZhonghui Gao
Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorFei Hu
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorYing Wei
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorYuyu Li
Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei, 430074 China
Search for more papers by this authorDezhong Liu
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Zhen Li
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yunhui Huang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Sodium (Na) metal batteries have attracted much attention due to their rich resources, low cost, and high energy density. As a promising solid electrolyte, Na3Zr2Si2PO12 (NZSP) is expected to be used in solid-state Na metal batteries addressing the safety concerns. However, due to the poor contact between NZSP and the Na metal, the interfacial resistance is too large to gain proper performance for practical solid-state batteries (SSBs) application. Here, a SnOx/Sn film is successfully introduced to improve the interface between Na and NZSP for enhancing the electrochemical performance of SSBs. As a result, the Na/NZSP interfacial resistance is dramatically reduced from 581 to 3 Ω cm2. The modified Na||Na symmetric cell keeps cycling over 1500 h with an overpotential of 40 mV at 0.1 mA cm–2 at room temperature. Even at current densities of 0.3 and 0.5 mA cm–2, the cell still maintains an excellent cyclability. When coupled with NaTi2(PO4)3 and a Na3V2(PO4)3 cathode, the full-cell demonstrates a good performance at 0.2 C and 1 C, respectively. The present work provides an effective way to solve the interface issue of SSBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202100339-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Wang, Y. Chen, Y. Jie, S. Lang, J. Song, Z. Lei, S. Wang, X. Ren, D. Wang, X. Li, R. Cao, G. Zhang, S. Jiao, Small Methods 2020, 4, 1900856.
- 2D. Lei, Y.-B. He, H. Huang, Y. Yuan, G. Zhong, Q. Zhao, X. Hao, D. Zhang, C. Lai, S. Zhang, J. Ma, Y. Wei, Q. Yu, W. Lv, Y. Yu, B. Li, Q.-H. Yang, Y. Yang, J. Lu, F. Kang, Nat. Commun. 2019, 10, 4244.
- 3Y. Zhao, K. R. Adair, X. Sun, Energy Environ. Sci. 2018, 11, 2673.
- 4S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Adv. Mater. 2017, 29, 1700431.
- 5C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y.-S. Hu, L. Chen, Adv. Energy Mater. 2018, 8, 1703012.
- 6Y. Zheng, Q. Pan, M. Clites, B. W. Byles, E. Pomerantseva, C. Y. Li, Adv. Energy Mater. 2018, 8, 1801885.
- 7Q. Zhou, B. Xu, P. H. Chien, Y. Li, B. Huang, N. Wu, H. Xu, N. S. Grundish, Y. Y. Hu, J. B. Goodenough, Small Methods 2020, 4, 2000764.
- 8X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H. W. Lee, Y. Cui, Nano Lett. 2017, 17, 2967.
- 9S. Yu, R. D. Schmidt, R. Garcia-Mendez, E. Herbert, N. J. Dudney, J. B. Wolfenstine, J. Sakamoto, D. J. Siegel, Chem. Mater. 2015, 28, 197.
- 10W. Luo, Y. Gong, Y. Zhu, K. K. Fu, J. Dai, S. D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, E. D. Wachsman, L. Hu, J. Am. Chem. Soc. 2016, 138, 12258.
- 11C. Wang, Y. Gong, J. Dai, L. Zhang, H. Xie, G. Pastel, B. Liu, E. Wachsman, H. Wang, L. Hu, J. Am. Chem. Soc. 2017, 139, 14257.
- 12A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, J. Power Sources 2016, 302, 135.
- 13C. Wang, H. Xie, L. Zhang, Y. Gong, G. Pastel, J. Dai, B. Liu, E. D. Wachsman, L. Hu, Adv. Energy Mater. 2018, 8, 1701963.
- 14X. Han, Y. Gong, K. K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572.
- 15H. Huo, Y. Chen, R. Li, N. Zhao, J. Luo, J. G. Pereira da Silva, R. Mücke, P. Kaghazchi, X. Guo, X. Sun, Energy Environ. Sci. 2020, 13, 127.
- 16S.-S. Chi, Y. Liu, N. Zhao, X. Guo, C.-W. Nan, L.-Z. Fan, Energy Storage Mater. 2019, 17, 309.
- 17K. Shi, Z. Wan, L. Yang, Y. Zhang, Y. Huang, S. Su, H. Xia, K. Jiang, L. Shen, Y. Hu, S. Zhang, J. Yu, F. Ren, Y. B. He, F. Kang, Angew. Chem. 2020, 59, 11784.
- 18Y. Liu, C. Li, B. Li, H. Song, Z. Cheng, M. Chen, P. He, H. Zhou, Adv. Energy Mater. 2018, 8, 1702374.
- 19Y. Shao, G. Zhong, Y. Lu, L. Liu, C. Zhao, Q. Zhang, Y.-S. Hu, Y. Yang, L. Chen, Energy Storage Mater. 2019, 23, 514.
- 20H. Park, M. Kang, Y.-C. Park, K. Jung, B. Kang, J. Power Sources 2018, 399, 329.
- 21Q. Ma, M. Guin, S. Naqash, C.-L. Tsai, F. Tietz, O. Guillon, Chem. Mater. 2016, 28, 4821.
- 22W. Zhou, Y. Li, S. Xin, J. B. Goodenough, ACS Cent. Sci. 2017, 3, 52.
- 23X. Yu, A. Manthiram, Matter 2019, 1, 439.
- 24E. Matios, H. Wang, C. Wang, X. Hu, X. Lu, J. Luo, W. Li, ACS Appl. Mater. Interfaces 2019, 11, 5064.
- 25Y. Lu, J. A. Alonso, Q. Yi, L. Lu, Z. L. Wang, C. Sun, Adv. Energy Mater. 2019, 9, 1901205.
- 26X. Miao, H. Di, X. Ge, D. Zhao, P. Wang, R. Wang, C. Wang, L. Yin, Energy Storage Mater. 2020, 30, 170.
- 27V. Kumar, A. Y. S. Eng, Y. Wang, D.-T. Nguyen, M.-F. Ng, Z. W. Seh, Energy Storage Mater. 2020, 29, 1.
- 28J. Li, H. Xu, S. Li, C. Zhang, C. X. long, L. W. Jian, X. Yong, Y. Zheng, Y. Huang, Energy Environ. Sci. 2019, 12, 2991.
- 29J. Ni, X. Zhu, Y. Yuan, Z. Wang, Y. Li, L. Ma, A. Dai, M. Li, T. Wu, R. Shahbazian-Yassar, J. Lu, L. Li, Nat. Commun. 2020, 11, 1212.
- 30Z. Shen, Y. Hu, R. Chen, X. He, K. Wu, Z. Cheng, P. Pan, L. Jiang, J. Mao, C. Ni, Nanoscale 2019, 11, 7744.
- 31M. A. Stranick, A. Moskwa, Surf. Sci. Spectra 1993, 2, 45.
- 32X. Huang, S. Cui, J. Chang, P. B. Hallac, C. R. Fell, Y. Luo, B. Metz, J. Jiang, P. T. Hurley, J. Chen, Angew. Chem., Int. Ed. Engl. 2015, 54, 1490.
- 33D. H. Youn, A. Heller, C. B. Mullins, Chem. Mater. 2016, 28, 1343.
- 34A. M. Abdel Hakeem, S. A. Saleh, E. M. M. Ibrahim, Mater. Sci. Eng., B 2021, 265, 115025.
- 35V. G. Kravets, Opt. Spectrosc. 2007, 103, 766.
- 36S. Wang, H. Xu, W. Li, A. Dolocan, A. Manthiram, J. Am. Chem. Soc. 2018, 140, 250.
- 37M. He, Z. Cui, C. Chen, Y. Li, X. Guo, J. Mater. Chem. A 2018, 6, 11463.
- 38R. Zhang, Z. Wang, W. Ma, W. Yu, S. Lu, X. Liu, RSC Adv. 2017, 7, 29458.