Scalable Manufacture of High-Performance Battery Electrodes Enabled by a Template-Free Method
Ruoyu Xiong
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Yun Zhang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yunming Wang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected], [email protected]
Search for more papers by this authorLan Song
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorMaoyuan Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorHui Yang
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorZhigao Huang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorDequn Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorHuamin Zhou
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorRuoyu Xiong
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Yun Zhang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yunming Wang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected], [email protected]
Search for more papers by this authorLan Song
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorMaoyuan Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorHui Yang
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorZhigao Huang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorDequn Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorHuamin Zhou
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorAbstract
Ion transport kinetics is identified as the major challenge of thick electrode design for high-energy-density lithium-ion batteries. The introduction of vertically-oriented structure pores, which provide fast transport pathways for Li+, can maximize the rate-performance of electrodes while holding a high energy density. To overcome the harsh manufacturing requirements of traditional template-based methods for the oriented-pore electrodes, a template-free strategy is developed to meet the large-scale fabrication demand, in which controllable oriented microchannels are facilely constructed by vertically aggregated bubbles generated from thermal decomposition. The proposed method is demonstrated to be applicable for different active materials and compatible with industrial roll-to-roll manufacturing. The oriented-pore electrodes exhibit a seven times higher capacity at 5C rate and show double the power density relative to the state of the art while maintaining a high level of energy density. The balance between the ion transport kinetics through the channels and in the matrix manifests an optimal design of the electrode structures, enabling the desired superior performance of the electrodes toward practical applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202100280-sup-0001-SuppMat.pdf826.4 KB | Supporting Information |
smtd202100280-sup-0002-VideoS1.mp44.5 MB | Supplemental Video 1 |
smtd202100280-sup-0003-VideoS2.mp45 MB | Supplemental Video 2 |
smtd202100280-sup-0004-VideoS3.mp45.8 MB | Supplemental Video 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.
- 2Y. Kuang, C. Chen, D. Kirsch, L. Hu, Adv. Energy Mater. 2019, 9, 1901457.
- 3S.-H. Park, P. J. King, R. Tian, C. S. Boland, J. Coelho, C. Zhang, P. McBean, N. McEvoy, M. P. Kremer, D. Daly, J. N. Coleman, V. Nicolosi, Nat. Energy 2019, 4, 560.
- 4L. L. Lu, Y. Y. Lu, Z. J. Xiao, T. W. Zhang, F. Zhou, T. Ma, Y. Ni, H. B. Yao, S. H. Yu, Y. Cui, Adv. Mater. 2018, 30, 1706745.
- 5M. E. Sotomayor, C. d. l. Torre-Gamarra, B. Levenfeld, J.-Y. Sanchez, A. Varez, G.-T. Kim, A. Varzi, S. Passerini, J. Power Sources 2019, 437, 226923.
- 6S. H. Park, R. Tian, J. Coelho, V. Nicolosi, J. N. Coleman, Adv. Energy Mater. 2019, 9, 1901359.
- 7Z. Du, D. L. Wood, C. Daniel, S. Kalnaus, J. Li, J. Appl. Electrochem. 2017, 47, 405.
- 8C. J. Bae, C. K. Erdonmez, J. W. Halloran, Y. M. Chiang, Adv. Mater. 2013, 25, 1254.
- 9T. Gao, W. Lu, J. Electrochem. Soc. 2020, 167, 110519.
- 10L. Zielke, T. Hutzenlaub, D. R. Wheeler, C.-W. Chao, I. Manke, A. Hilger, N. Paust, R. Zengerle, S. Thiele, Adv. Energy Mater. 2015, 5, 1401612.
- 11S. Jaiser, J. Kumberg, J. Klaver, J. L. Urai, W. Schabel, J. Schmatz, P. Scharfer, J. Power Sources 2017, 345, 97.
- 12Y. Liu, Y. Zhu, Y. Cui, Nat. Energy 2019, 4, 540.
- 13M. Azami-Ghadkolai, M. Yousefi, S. Allu, S. Creager, R. Bordia, J. Power Sources 2020, 474, 228490.
- 14X. Wang, T. Wang, J. Borovilas, X. He, S. Du, Y. Yang, Nano Res. 2019, 12, 2002.
- 15M. S. Saleh, J. Li, J. Park, R. Panat, Addit. Manuf. 2018, 23, 70.
- 16S. Lin, M. K. Shafique, Z. Cai, J. Xiao, Y. Chen, Y. Wang, X. Hu, ACS Nano 2019, 13, 13037.
- 17J. I. Hur, L. C. Smith, B. Dunn, Joule 2018, 2, 1187.
- 18J. Li, M. C. Leu, R. Panat, J. Park, Mater. Des. 2017, 119, 417.
- 19L. Shen, E. Uchaker, X. Zhang, G. Cao, Adv. Mater. 2012, 24, 6502.
- 20J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A. R. Studart, Nat. Energy 2016, 1, 16097.
- 21J. S. Sander, R. M. Erb, L. Li, A. Gurijala, Y. M. Chiang, Nat. Energy 2016, 1, 16099.
- 22H. Jeong, S.-J. Lim, S. Chakravarthy, K. H. Kim, J. Lee, J. S. Heo, H. Park, J. Power Sources 2020, 451, 227764.
- 23B. Shi, Y. Shang, Y. Pei, S. Pei, L. Wang, D. Heider, Y. Y. Zhao, C. Zheng, B. Yang, S. Yarlagadda, T. W. Chou, K. K. Fu, Nano Lett. 2020, 20, 5504.
- 24C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song, W. Luo, Y. Wang, Y. Yao, G. Pastel, J. Xie, L. Hu, Adv. Energy Mater. 2017, 7, 1700595.
- 25D. Dang, Y. Wang, S. Gao, Y.-T. Cheng, Carbon 2020, 159, 133.
- 26C. Huang, M. Dontigny, K. Zaghib, P. S. Grant, J. Mater. Chem. A 2019, 7, 21421.
- 27K. Hamamoto, M. Fukushima, M. Mamiya, Y. Yoshizawa, J. Akimoto, T. Suzuki, Y. Fujishiro, Solid State Ion 2012, 225, 560.
- 28S. Behr, R. Amin, Y.-M. Chiang, A. P. Tomsia, Ceram. Forum Int. 2015, 92, 39.
- 29A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, K. Droeder, Nat. Energy 2018, 3, 290.
- 30J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.
- 31N. Besnard, A. Etiemble, T. Douillard, O. Dubrunfaut, P. Tran-Van, L. Gautier, S. Franger, J.-C. Badot, E. Maire, B. Lestriez, Adv. Energy Mater. 2017, 7, 1602239.
- 32C. Lim, B. Yan, H. X. Kang, Z. B. Song, W. C. Lee, V. De Andrade, F. De Carlo, L. L. Yin, Y. Kim, L. K. Zhu, J. Power Sources 2016, 328, 46.
- 33J. Newman, AIChE J. 1975, 21, 25.
- 34R. Xiong, T. Zhang, T. Huang, M. Li, Y. Zhang, H. Zhou, Appl. Energy 2020, 270, 115109.