Controlled Hydrothermal/Solvothermal Synthesis of High-Performance LiFePO4 for Li-Ion Batteries
Zhaojin Li
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Hebei, 050018 China
Search for more papers by this authorJinxing Yang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorTianjia Guang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorBingbing Fan
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorKongjun Zhu
State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorCorresponding Author
Xiaohui Wang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
E-mail: [email protected]
Search for more papers by this authorZhaojin Li
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Hebei, 050018 China
Search for more papers by this authorJinxing Yang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorTianjia Guang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 China
Search for more papers by this authorBingbing Fan
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorKongjun Zhu
State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorCorresponding Author
Xiaohui Wang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The sluggish Li-ion diffusivity in LiFePO4, a famous cathode material, relies heavily on the employment of a broad spectrum of modifications to accelerate the slow kinetics, including size and orientation control, coating with electron-conducting layer, aliovalent ion doping, and defect control. These strategies are generally implemented by employing the hydrothermal/solvothermal synthesis, as reflected by the hundreds of publications on hydrothermal/solvothermal synthesis in recent years. However, LiFePO4 is far from the level of controllable preparation, due to the lack of the understanding of the relations between the synthesis condition and the nucleation-and-growth of LiFePO4. In this paper, the recent progress in controlled hydrothermal/solvothermal synthesis of LiFePO4 is first summarized, before an insight into the relations between the synthesis condition and the nucleation-and-growth of LiFePO4 is obtained. Thereafter, a review over surface decoration, lattice substitution, and defect control is provided. Moreover, new research directions and future trends are also discussed.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188.
- 2J. Wang, X. Sun, Energy Environ. Sci. 2015, 8, 1110.
- 3L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 2011, 4, 269.
- 4a) D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 2004, 7, A30; b) M. S. Islam, D. J. Driscoll, C. A. J. Fisher, P. R. Slater, Chem. Mater. 2005, 17, 5085; c) S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 2008, 7, 707.
- 5a) Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 2014, 14, 2849; b) X. Rui, X. Zhao, Z. Lu, H. Tan, D. Sim, H. H. Hng, R. Yazami, T. M. Lim, Q. Yan, ACS Nano 2013, 7, 5637; c) B. Guo, H. Ruan, C. Zheng, H. Fei, M. Wei, Sci. Rep. 2013, 3, 2788.
- 6a) H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 2014, 344, 1451; b) J. Wang, Y. K. Chen-Wiegart, J. Wang, Nat. Commun. 2014, 5, 4570; c) Z. Li, J. Yang, C. Li, S. Wang, L. Zhang, K. Zhu, X. Wang, Chem. Mater. 2018, 30, 874.
- 7a) R. Malik, F. Zhou, G. Ceder, Nat. Mater. 2011, 10, 587; b) R. Malik, A. Abdellahi, G. Ceder, J. Electrochem. Soc. 2013, 160, A3179.
- 8a) Z. Li, Z. Peng, H. Zhang, T. Hu, M. Hu, K. Zhu, X. Wang, Nano Lett. 2016, 16, 795; b) Y. Li, F. El Gabaly, T. R. Ferguson, R. B. Smith, N. C. Bartelt, J. D. Sugar, K. R. Fenton, D. A. Cogswell, A. L. Kilcoyne, T. Tyliszczak, M. Z. Bazant, W. C. Chueh, Nat. Mater. 2014, 13, 1149; c) Y. Li, J. N. Weker, W. E. Gent, D. N. Mueller, J. Lim, D. A. Cogswell, T. Tyliszczak, W. C. Chueh, Adv. Funct. Mater. 2015, 25, 3677.
- 9a) R. Y. Tian, H. Q. Liu, Y. Jiang, J. K. Chen, X. H. Tan, G. G. Liu, L. Zhang, X. H. Gu, Y. J. Guo, H. F. Wang, L. F. Sun, W. G. Chu, ACS Appl. Mater. Interfaces 2015, 7, 11377; b) C. L. Gong, Z. G. Xue, S. Wen, Y. S. Ye, X. L. Xie, J. Power Sources 2016, 318, 93; c) Z. Chen, J. R. Dahn, J. Electrochem. Soc. 2002, 149, A1184; d) H. Huang, S. C. Yin, L. F. Nazar, Electrochem. Solid-State Lett. 2001, 4, A170.
- 10S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater. 2002, 1, 123.
- 11a) S. Y. Chung, S. Y. Choi, T. Yamamoto, Y. Ikuhara, Phys. Rev. Lett. 2008, 100, 125502; b) R. Malik, D. Burch, M. Bazant, G. Ceder, Nano Lett. 2010, 10, 4123.
- 12J. Chen, M. Whittingham, Electrochem. Commun. 2006, 8, 855.
- 13a) K. Wang, R. Cai, T. Yuan, X. Yu, R. Ran, Z. Shao, Electrochim. Acta 2009, 54, 2861; b) K. Zaghib, N. Ravet, M. Gauthier, F. Gendron, A. Mauger, J. B. Goodenough, C. M. Julien, J. Power Sources 2006, 163, 560; c) P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nat. Mater. 2004, 3, 147.
- 14a) L. Wang, G. C. Liang, X. Q. Ou, X. K. Zhi, J. P. Zhang, J. Y. Cui, J. Power Sources 2009, 189, 423; b) N. Ravet, M. Gauthier, K. Zaghib, J. B. Goodenough, A. Mauger, F. Gendron, C. M. Julien, Chem. Mater. 2007, 19, 2595; c) X. Zhang, Z. Bi, W. He, G. Yang, H. Liu, Y. Yue, Energy Environ. Sci. 2014, 7, 2285; d) J. Barker, M. Y. Saidi, J. L. Swoyer, Electrochem. Solid-State Lett. 2003, 6, A53.
- 15a) S. Beninati, L. Damen, M. Mastragostino, J. Power Sources 2008, 180, 875; b) M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara, J. Power Sources 2003, 119, 258; c) K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, H. G. Kim, Electrochem. Commun. 2003, 5, 839; d) L. Wang, Y. Huang, R. Jiang, D. Jia, Electrochim. Acta 2007, 52, 6778.
- 16a) B. Q. Zhu, X. H. Li, Z. X. Wang, H. J. Guo, Mater. Chem. Phys. 2006, 98, 373; b) J. C. Zheng, X. H. Li, Z. X. Wang, H. J. Guo, S. Y. Zhou, J. Power Sources 2008, 184, 574.
- 17a) R. von Hagen, H. Lorrmann, K.-C. Möller, S. Mathur, Adv. Energy Mater. 2012, 2, 553; b) C. Zhu, Y. Yu, L. Gu, K. Weichert, J. Maier, Angew. Chem., Int. Ed. 2011, 50, 6278.
- 18a) R. Dominko, M. Bele, J.-M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon, J. Jamnik, Chem. Mater. 2007, 19, 2960; b) J. K. Kim, J. W. Choi, G. S. Chauhan, J. H. Ahn, G. C. Hwang, J. B. Choi, H. J. Ahn, Electrochim. Acta 2008, 53, 8258; c) K. F. Hsu, S. Y. Tsay, B. J. Hwang, J. Mater. Chem. 2004, 14, 2690; d) M. G. Fischer, X. Hua, B. D. Wilts, E. Castillo-Martinez, U. Steiner, ACS Appl. Mater. Interfaces 2018, 10, 1646.
- 19a) L. Peng, Y. Zhao, Y. Ding, G. Yu, Chem. Commun. 2014, 50, 9569; b) L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Nano Lett. 2012, 12, 5632; c) N. Ye, T. Yan, Z. Jiang, W. Wu, T. Fang, Ceram. Int. 2018, 44, 4521.
- 20a) M. S. Whittingham, Chem. Rev. 2014, 114, 11414; b) J. Chen, Recent Pat. Nanotechnol. 2013, 7, 2.
- 21M. K. Devaraju, I. Honma, Adv. Energy Mater. 2012, 2, 284.
- 22Z. J. Li, K. J. Zhu, J. L. Li, X. H. Wang, CrystEngComm 2014, 16, 10112.
- 23M. Y. Cho, Y. S. Lim, S. M. Park, K. B. Kim, K. C. Roh, CrystEngComm 2015, 17, 6149.
- 24a) F. D. Wang, V. N. Richards, S. P. Shields, W. E. Buhro, Chem. Mater. 2014, 26, 5; b) V. N. Richards, S. P. Shields, W. E. Buhro, Chem. Mater. 2011, 23, 137.
- 25D. Turnbull, J. C. Fisher, J. Chem. Phys. 1949, 17, 71.
- 26V. Mathew, M. H. Alfaruqi, J. Gim, J. Song, S. Kim, D. Ahn, J. Kim, Mater. Charact. 2014, 89, 93.
- 27Y. Jiang, S. Liao, Z. Liu, G. Xiao, Q. Liu, H. Song, J. Mater. Chem. A 2013, 1, 4546.
- 28L. Peng, X. Zhang, Z. Fang, Y. Zhu, Y. Xie, J. J. Cha, G. Yu, Chem. Mater. 2017, 29, 10526.
- 29M. F. Chen, X. Y. Wang, H. B. Shu, R. Z. Yu, X. K. Yang, W. H. Huang, J. Alloys Compd. 2015, 652, 213.
- 30F. Wang, Z. Fang, Y. Zhang, J. Electroanal. Chem. 2016, 775, 110.
- 31S. Lin, Q. Ge, Y. Cao, W. Qin, X. Wen, Mater. Express 2016, 6, 351.
- 32G. Xu, F. Li, Z. Tao, X. Wei, Y. Liu, X. Li, Z. Ren, G. Shen, G. Han, J. Power Sources 2014, 246, 696.
- 33Q. Wang, S. Deng, H. Wang, M. Xie, J. Liu, H. Yan, J. Alloys Compd. 2013, 553, 69.
- 34a) Z. Y. Chen, M. Xu, B. L. Du, H. L. Zhu, T. Xie, W. H. Wang, J. Power Sources 2014, 272, 837; b) N. Q. Liu, M. Y. Gao, Z. B. Li, C. M. Li, W. K. Wang, H. Zhang, Z. B. Yu, Y. Q. Huang, J. Alloys Compd. 2014, 599, 127.
- 35N. Zhou, E. Uchaker, H. Y. Wang, M. Zhang, S. Q. Liu, Y. N. Liu, X. W. Wu, G. Z. Cao, H. Y. Li, RSC Adv. 2013, 3, 19366.
- 36N. Zhou, H. Y. Wang, E. Uchaker, M. Zhang, S. Q. Liu, Y. N. Liu, G. Cao, J. Power Sources 2013, 239, 103.
- 37J. J. Song, L. Wang, G. J. Shao, M. W. Shi, Z. P. Ma, G. L. Wang, W. Song, S. Liu, C. X. Wang, Phys. Chem. Chem. Phys. 2014, 16, 7728.
- 38W. Yu, L. Wu, J. Zhao, Y. Zhang, G. Li, J. Electroanal. Chem. 2013, 704, 214.
- 39Z. P. Ma, G. J. Shao, Y. Q. Fan, G. L. Wang, J. J. Song, T. T. Liu, ACS Appl. Mater. Interfaces 2014, 6, 9236.
- 40B. Pei, H. Yao, W. Zhang, Z. Yang, J. Power Sources 2012, 220, 317.
- 41H. Ghafarian-Zahmatkesh, M. Javanbakht, M. Ghaemi, J. Power Sources 2015, 284, 339.
- 42a) M. Rastgoo-Deylami, M. Javanbakht, M. Ghaemi, L. Naji, H. Omidvar, M. R. Ganjali, Int. J. Electrochem. Sci. 2014, 9, 3199; b) L. Y. Tan, Q. L. Tang, X. H. Chen, A. P. Hu, W. N. Deng, Y. S. Yang, L. S. Xu, Electrochim. Acta 2014, 137, 344.
- 43H. Deng, S. Jin, L. Zhan, Y. Wang, W. Qiao, L. Ling, J. Power Sources 2012, 220, 342.
- 44M. Chen, C. Du, B. Song, K. Xiong, G. Yin, P. Zuo, X. Cheng, J. Power Sources 2013, 223, 100.
- 45S. Ju, T. Liu, H. Peng, G. Li, K. Chen, Mater. Lett. 2013, 93, 194.
- 46L. Cheng, G. Liang, S. El Khakani, D. D. MacNeil, J. Power Sources 2013, 242, 656.
- 47S. Li, X. Liu, R. Mi, H. Liu, Y. Li, W. M. Lau, J. Mei, ACS Appl. Mater. Interfaces 2014, 6, 9449.
- 48C. Wu, J. Xie, G. Cao, X. Zhao, S. Zhang, CrystEngComm 2014, 16, 2239.
- 49J. Zhang, J. B. Lu, D. C. Bian, Z. H. Yang, Q. Wu, W. X. Zhang, Ind. Eng. Chem. Res. 2014, 53, 12209.
- 50a) S. Bolloju, R. Rohan, S. T. Wu, H. X. Yen, G. D. Dwivedi, Y. A. Lin, J. T. Lee, Electrochim. Acta 2016, 220, 164; b) F. L. Meng, D. Y. Zhang, C. K. Chang, J. Y. Xu, A. S. Kamzin, J. Inorg. Mater. 2016, 31, 802.
- 51C. Miao, P. Bai, Q. Jiang, S. Sun, X. Wang, J. Power Sources 2014, 246, 232.
- 52Z. Yang, J. Zhang, Q. Wu, W. Zhang, H. Wang, Ionics 2014, 20, 653.
- 53W. X. Li, H. J. Zhang, Y. P. Mu, L. Liu, Y. Wang, J. Mater. Chem. A 2015, 3, 15661.
- 54G. Qin, S. Xue, Q. Ma, C. Wang, CrystEngComm 2014, 16, 260.
- 55J. Su, X. L. Wu, C. P. Yang, J. S. Lee, J. Kim, Y. G. Guo, J. Phys. Chem. C 2012, 116, 5019.
- 56Y. Park, K. C. Roh, W. Shin, J.-W. Lee, RSC Adv. 2013, 3, 14263.
- 57J. Bi, T. Zhang, K. Wang, B. Zhong, G. Luo, Particuology 2016, 24, 142.
- 58a) L. Wang, W. Sun, X. Tang, X. Huang, X. He, J. Li, Q. Zhang, J. Gao, G. Tian, S. Fan, J. Power Sources 2013, 244, 94; b) L. He, Z. Zhao, J. Alloys Compd. 2016, 688, 386.
- 59a) F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrini, Science 2015, 347, 1246501; b) Z. Li, T. Hu, Z. Peng, M. Hu, K. Zhu, X. Wang, ChemNanoMat 2017, 3, 292.
- 60Y. Q. Wang, D. Y. Zhang, C. K. Chang, L. Deng, K. J. Huang, Mater. Chem. Phys. 2014, 148, 933.
- 61J. Wang, B. Ren, M. Hojamberdiev, Y. Xu, H. Yan, Adv. Powder Technol. 2014, 25, 567.
- 62K. Bazzi, M. Nazri, V. M. Naik, V. K. Garg, A. C. Oliveira, P. P. Vaishnava, G. A. Nazri, R. Naik, J. Power Sources 2016, 306, 17.
- 63M. Lin, Y. M. Chen, B. L. Chen, X. Wu, K. F. Kam, W. Lu, H. L. W. Chan, J. K. Yuan, ACS Appl. Mater. Interfaces 2014, 6, 17556.
- 64L. Yang, J. Chen, L. Chen, P. Yang, J. Zhang, A. Li, Y. Wang, Y. Wang, R. Wang, J. Mater. Sci.: Mater. Electron. 2016, 27, 12258.
- 65Y. Yu, Q. Li, Y. Ma, X. Zhang, Y. Zhu, Y. Qian, J. Nanosci. Nanotechnol. 2013, 13, 1515.
- 66J. Dong, B. H. Zhong, Y. J. Zhong, Y. Tang, H. Liu, X. D. Guo, Chin. J. Inorg. Chem. 2013, 29, 2257.
- 67Z. Caban-Huertas, O. Ayyad, D. P. Dubal, P. Gomez-Romero, Sci. Rep. 2016, 6, 27024.
- 68Z. M. Zheng, W. K. Pang, X. C. Tang, D. Z. Jia, Y. D. Huang, Z. P. Guo, J. Alloys Compd. 2015, 640, 95.
- 69a) W. Li, Z. Wei, L. Huang, D. Zhu, Y. Chen, J. Alloys Compd. 2015, 651, 34; b) G. Liu, S. Zhang, X. Wei, S. Wang, Y. Yu, Int. J. Electrochem. Sci. 2016, 11, 6799.
- 70Y. Y. Liu, J. J. Gu, J. L. Zhang, F. Yu, J. Wang, N. Nie, W. Li, RSC Adv. 2015, 5, 9745.
- 71M. Y. Cho, H. Kim, H. Kim, Y. S. Lim, K. B. Kim, J. W. Lee, K. Kang, K. C. Roh, J. Mater. Chem. A 2014, 2, 5922.
- 72M. M. Chen, Q. Q. Ma, C. Y. Wang, X. Sun, L. Q. Wang, C. Zhang, J. Power Sources 2014, 263, 268.
- 73W. Y. Yu, L. L. Wu, J. B. Zhao, Y. P. Zhang, G. Z. Li, Adv. Powder Technol. 2014, 25, 1688.
- 74a) Y. P. Zhang, L. L. Wu, J. B. Zhao, W. Y. Yu, Mater. Chem. Phys. 2015, 166, 182; b) L. Hu, T. W. Zhang, J. W. Liang, Y. C. Zhu, K. L. Zhang, Y. T. Qian, RSC Adv. 2016, 6, 456; c) Y. J. Wang, B. Zhu, Y. M. Wang, F. Wang, Ceram. Int. 2016, 42, 10297.
- 75K. Vediappan, A. Guerfi, V. Gariépy, G. P. Demopoulos, P. Hovington, J. Trottier, A. Mauger, C. M. Julien, K. Zaghib, J. Power Sources 2014, 266, 99.
- 76Y. Y. Liu, J. J. Gu, J. L. Zhang, J. Wang, N. Nie, Y. Fu, W. Li, F. Yu, Electrochim. Acta 2015, 173, 448.
- 77Y. K. Hu, J. X. Ren, Q. L. Wei, X. D. Guo, Y. Tang, B. H. Zhong, H. Liu, Acta Phys.-Chim. Sin. 2014, 30, 75.
- 78J. X. Ren, Y. K. Hu, X. D. Guo, Y. Tang, B. H. Zhong, H. Liu, Acta Phys.-Chim. Sin. 2014, 30, 866.
- 79Y. Zhang, L. Wu, J. Zhao, W. Yu, J. Electroanal. Chem. 2014, 719, 1.
- 80a) C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm, C. J. Drummond, Chem. Mater. 2009, 21, 5300; b) D. P. Singh, F. M. Mulder, A. M. Abdelkader, M. Wagemaker, Adv. Energy Mater. 2013, 3, 572.
- 81J. F. M. Oudenhoven, L. Baggetto, P. H. L. Notten, Adv. Energy Mater. 2011, 1, 10.
- 82K. Nakanishi, N. Soga, J. Am. Ceram. Soc. 1991, 74, 2518.
- 83F. Cheng, S. Wang, A. H. Lu, W. C. Li, J. Power Sources 2013, 229, 249.
- 84J. J. Song, L. Wang, Z. P. Ma, Z. L. Du, G. J. Shao, L. X. Kong, W. M. Gao, RSC Adv. 2015, 5, 1983.
- 85Y. Y. Liu, J. J. Gu, J. L. Zhang, F. Yu, L. T. Dong, N. Nie, W. Li, J. Power Sources 2016, 304, 42.
- 86J. Chen, J. Bai, H. Chen, J. Graetz, J. Phys. Chem. Lett. 2011, 2, 1874.
- 87a) X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, Y. Zhou, J. Phys. Chem. C 2010, 114, 16806; b) F. Y. Sharikov, O. A. Drozhzhin, V. D. Sumanov, A. N. Baranov, A. M. Abakumov, E. V. Antipov, Cryst. Growth Des. 2017, 18, 879; c) X. Huang, X. He, C. Jiang, G. Tian, Y. Liu, Ind. Eng. Chem. Res. 2017, 56, 10648; d) B. Ellis, W. H. Kan, W. R. M. Makahnouk, L. F. Nazar, J. Mater. Chem. 2007, 17, 3248.
- 88L. Lin, Y. Wen, J. O, Y. Guo, D. Xiao, RSC Adv. 2013, 3, 14652.
- 89X. Ou, H. Gu, Y. Wu, J. Lu, Y. Zheng, Electrochim. Acta 2013, 96, 230.
- 90J. Zhu, J. Fiore, D. Li, N. M. Kinsinger, Q. Wang, E. DiMasi, J. Guo, D. Kisailus, Cryst. Growth Des. 2013, 13, 4659.
- 91J. Du, L. Jiao, Q. Wu, Y. Liu, Z. Qi, L. Guo, Y. Wang, H. Yuan, Electrochim. Acta 2013, 98, 288.
- 92J. Guo, L. Chen, X. Zhang, H. Chen, L. Tang, Mater. Lett. 2013, 106, 290.
- 93Z. Ma, G. Shao, X. Wang, J. Song, G. Wang, T. Liu, Mater. Chem. Phys. 2014, 143, 969.
- 94K. Dokko, S. Koizumi, H. Nakano, K. Kanamura, J. Mater. Chem. 2007, 17, 4803.
- 95C. Xu, L. Wang, X. He, J. Luo, Y. Shang, J. Wang, Int. J. Electrochem. Sci. 2016, 11, 1558.
- 96S. Yang, M. Hu, L. Xi, R. Ma, Y. Dong, C. Y. Chung, ACS Appl. Mater. Interfaces 2013, 5, 8961.
- 97F. Zheng, C. Yang, X. Xiong, J. Xiong, R. Hu, Y. Chen, M. Liu, Angew. Chem., Int. Ed. Engl. 2015, 54, 13058.
- 98W. Quan, Z. Tang, J. Zhang, Z. Zhang, Mater. Chem. Phys. 2014, 147, 333.
- 99a) H. B. Shu, M. F. Chen, Y. Q. Fu, X. K. Yang, X. Yi, Y. S. Bai, Q. Q. Liang, Q. L. Wei, B. N. Hu, J. L. Tan, C. Wu, M. Zhou, X. Y. Wang, J. Power Sources 2014, 252, 73; b) H. B. Shu, M. F. Chen, F. Wen, Y. Q. Fu, Q. Q. Liang, X. K. Yang, Y. Q. Shen, L. Liu, X. Y. Wang, Electrochim. Acta 2015, 152, 368.
- 100F. Fathollahi, M. Javanbakht, H. Omidvar, M. Ghaemi, J. Alloys Compd. 2015, 643, 40.
- 101M. Sivakumar, R. Muruganantham, R. Subadevi, Appl. Surf. Sci. 2015, 337, 234.
- 102C. C. Yang, J. H. Jang, J. R. Jiang, Mater. Chem. Phys. 2015, 165, 196.
- 103Y. Xu, J. Mao, J. Mater. Sci. 2016, 51, 10026.
- 104a) X. L. Fan, J. J. Luo, C. Shao, X. S. Zhou, Z. J. Niu, Electrochim. Acta 2015, 158, 342; b) Y. Liu, M. Zhang, Y. Li, Y. M. Hu, M. Y. Zhu, H. M. Jin, W. X. Li, Electrochim. Acta 2015, 176, 689.
- 105V. H. Nguyen, E. M. Jin, H. B. Gu, J. Power Sources 2013, 244, 586.
- 106a) H. Xu, J. Chang, J. Sun, L. Gao, Mater. Lett. 2012, 83, 27; b) X. H. Tian, Y. K. Zhou, X. F. Tu, Z. T. Zhang, G. D. Du, J. Power Sources 2017, 340, 40; c) X. Wang, Z. Feng, J. Huang, W. Deng, X. Li, H. Zhang, Z. Wen, Carbon 2018, 127, 149; d) G. Longoni, J. K. Panda, L. Gagliani, R. Brescia, L. Manna, F. Bonaccorso, V. Pellegrini, Nano Energy 2018, 51, 656.
- 107a) W. Wei, L. Guo, X. Qiu, P. Qu, M. Xu, L. Guo, RSC Adv. 2015, 5, 37830; b) V. H. Nguyen, W. L. Wang, E. M. Jin, H. B. Gu, J. Alloys Compd. 2013, 569, 29; c) G. Qin, Q. Ma, C. Wang, Solid State Ionics 2014, 257, 60; d) X. F. Li, D. M. Luo, X. Zhang, Z. Zhang, J. Power Sources 2015, 291, 75; e) G. L. Wang, Z. P. Ma, G. J. Shao, L. X. Kong, W. M. Gao, J. Power Sources 2015, 291, 209.
- 108a) C. Su, X. Bu, L. Xu, J. Liu, C. Zhang, Electrochim. Acta 2012, 64, 190; b) J. Li, Q. Qu, L. Zhang, L. Zhang, H. Zheng, J. Alloys Compd. 2013, 579, 377; c) D. Zhao, Y. L. Feng, Y. G. Wang, Y. Y. Xia, Electrochim. Acta 2013, 88, 632; d) Z. P. Ma, Y. Q. Fan, G. J. Shao, G. L. Wang, J. J. Song, T. L. Liu, ACS Appl. Mater. Interfaces 2015, 7, 2937; e) H. Gong, H. R. Xue, T. Wang, J. P. He, J. Power Sources 2016, 318, 220; f) L. Bao, L. L. Li, G. Xu, J. W. Wang, R. Y. Zhao, G. Shen, G. R. Han, S. X. Zhou, Electrochim. Acta 2016, 222, 685; g) J. Song, B. Sun, H. Liu, Z. Ma, Z. Chen, G. Shao, G. Wang, ACS Appl. Mater. Interfaces 2016, 8, 15225.
- 109a) D. Bhuvaneswari, N. Kalaiselvi, Phys. Chem. Chem. Phys. 2014, 16, 1469; b) A. Milev, L. George, S. Khan, P. Selvam, G. S. Kamali Kannangara, Electrochim. Acta 2016, 209, 565.
- 110Lung Hao Hu, F. Y. Wu, C. T. Lin, A. N. Khlobystov, L. J. Li, Nat. Commun. 2013, 4, 1687.
- 111a) L. Wang, H. Wang, Z. Liu, C. Xiao, S. Dong, P. Han, Z. Zhang, X. Zhang, C. Bi, G. Cui, Solid State Ionics 2010, 181, 1685; b) X. Zhou, F. Wang, Y. Zhu, Z. Liu, J. Mater. Chem. 2011, 21, 3353; c) Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. Zhang, Electrochem. Commun. 2010, 12, 10; d) F. Y. Su, C. H. You, Y. B. He, W. Lv, W. Cui, F. M. Jin, B. H. Li, Q. H. Yang, F. Y. Kang, J. Mater. Chem. 2010, 20, 9644; e) Y. Ma, X. L. Li, Z. Xie, Z. L. Xiu, Y. Z. Wu, X. P. Hao, J. Mater. Sci.: Mater. Electron. 2014, 25, 2716; f) V. H. Nguyen, H.-B. Gu, J. Appl. Electrochem. 2014, 44, 1153; g) F. Fathollahi, M. Javanbakht, H. Omidvar, M. Ghaemi, J. Alloys Compd. 2015, 627, 146.
- 112a) Y. Zhang, L. Chen, J. Ou, J. Wang, B. Zheng, H. Yuan, Y. Guo, D. Xiao, J. Mater. Chem. A 2013, 1, 7933; b) Y. Long, Y. Shu, X. Ma, M. Ye, Electrochim. Acta 2014, 117, 105; c) W. Wei, S. Gao, Z. Yang, L. Guo, RSC Adv. 2014, 4, 56701; d) G. Yuan, J. Bai, T. N. L. Doan, P. Chen, Mater. Lett. 2015, 158, 248.
- 113a) G. Wu, R. Ran, B. Zhao, Y. Sha, C. Su, Y. Zhou, Z. Shao, J. Energy Chem. 2014, 23, 363; b) B. Wang, Y. Xie, T. Liu, H. Luo, B. Wang, C. Wang, L. Wang, D. Wang, S. Dou, Y. Zhou, Nano Energy 2017, 42, 363.
- 114Y. Zhang, W. Wang, P. Li, Y. Fu, X. Ma, J. Power Sources 2012, 210, 47.
- 115G. Wu, Y. Zhou, Z. Shao, Appl. Surf. Sci. 2013, 283, 999.
- 116B. Wang, A. Liu, W. A. Abdulla, D. Wang, X. S. Zhao, Nanoscale 2015, 7, 8819.
- 117a) S. Tao, W. F. Huang, G. X. Wu, X. B. Zhu, X. B. Wang, M. Zhang, S. H. Wang, W. S. Chu, L. Song, Z. Y. Wu, Electrochim. Acta 2014, 144, 406; b) C. Gao, J. Zhou, G. Liu, L. Wang, J. Mater. Sci. 2017, 52, 1590.
- 118Z. Chen, B. Du, M. Xu, H. Zhu, L. Li, W. Wang, Electrochim. Acta 2013, 109, 262.
- 119a) W. M. Chen, L. Qie, L. X. Yuan, S. A. Xia, X. L. Hu, W. X. Zhang, Y. H. Huang, Electrochim. Acta 2011, 56, 2689; b) G. Qin, Q. Wu, J. Zhao, Q. Ma, C. Wang, J. Power Sources 2014, 248, 588.
- 120a) Y. P. Liang, C. C. Li, W. J. Chen, J. T. Lee, Electrochim. Acta 2013, 87, 763; b) Y. H. Huang, K. S. Park, J. B. Goodenough, J. Electrochem. Soc. 2006, 153, A2282.
- 121H. M. Xie, R. S. Wang, J. R. Ying, L. Y. Zhang, A. F. Jalbout, H. Y. Yu, G. L. Yang, X. M. Pan, Z. M. Su, Adv. Mater. 2006, 18, 2609.
- 122H. Liu, L. B. Kong, P. Zhang, J. Du, X. M. Li, Y. C. Luo, L. Kang, Ionics 2014, 20, 15.
- 123Y. He, W. Chen, C. Gao, J. Zhou, X. Li, E. Xie, Nanoscale 2013, 5, 8799.
- 124a) S. Yoon, C. Liao, X. G. Sun, C. A. Bridges, R. R. Unocic, J. Nanda, S. Dai, M. P. Paranthaman, J. Mater. Chem. 2012, 22, 4611; b) F. Wang, Y. Zhang, L. Luo, J. Du, L. Guo, Y. Ding, Ionics 2016, 22, 333; c) Y. Zhou, J. Lu, C. Deng, H. Zhu, G. Z. Chen, S. Zhang, X. Tian, J. Mater. Chem. A 2016, 4, 12065; d) X. L. Wu, L. Y. Jiang, F. F. Cao, Y. G. Guo, L. J. Wan, Adv. Mater. 2009, 21, 2710.
- 125J. L. Zhang, J. Wang, Y. Y. Liu, N. Nie, J. J. Gu, F. Yu, W. Li, ACS Appl. Mater. Interfaces 2015, 7, 20134.
- 126a) Z. Jin Li, W. Jiao, L. Yuan Yuan, N. Ning, G. Jun Jie, Y. Feng, L. Wei, J. Mater. Chem. A 2015, 3, 2043; b) K. Okada, I. Kimura, K. Machida, RSC Adv. 2018, 8, 5848.
- 127M. J. Loveridge, M. J. Lain, I. D. Johnson, A. Roberts, S. D. Beattie, R. Dashwood, J. A. Darr, R. Bhagat, Sci. Rep. 2016, 6, 37787.
- 128N. Meethong, Y.-H. Kao, S. A. Speakman, Y.-M. Chiang, Adv. Funct. Mater. 2009, 19, 1060.
- 129K. Zaghib, A. Mauger, J. B. Goodenough, F. Gendron, C. M. Julien, Chem. Mater. 2007, 19, 3740.
- 130a) M. Wagemaker, B. L. Ellis, D. Lützenkirchen-Hecht, F. M. Mulder, L. F. Nazar, Chem. Mater. 2008, 20, 6313; b) C. S. Sun, Z. Zhou, Z. G. Xu, D. G. Wang, J. P. Wei, X. K. Bian, J. Yan, J. Power Sources 2009, 193, 841; c) F. Omenya, N. A. Chernova, S. Upreti, P. Y. Zavalij, K.-W. Nam, X.-Q. Yang, M. S. Whittingham, Chem. Mater. 2011, 23, 4733; d) L. L. Zhang, G. Liang, A. Ignatov, M. C. Croft, X. Q. Xiong, I. M. Hung, Y. H. Huang, X. L. Hu, W. X. Zhang, Y. L. Peng, J. Phys. Chem. C 2011, 115, 13520.
- 131M. Chen, L. L. Shao, H. B. Yang, T. Z. Ren, G. H. Du, Z. Y. Yuan, Electrochim. Acta 2015, 167, 278.
- 132I. D. Johnson, M. Lübke, O. Y. Wu, N. M. Makwana, G. J. Smales, H. U. Islam, R. Y. Dedigama, R. I. Gruar, C. J. Tighe, D. O. Scanlon, F. Corà, D. J. L. Brett, P. R. Shearing, J. A. Darr, J. Power Sources 2016, 302, 410.
- 133K. L. Harrison, C. A. Bridges, M. P. Paranthaman, C. U. Segre, J. Katsoudas, V. A. Maroni, J. C. Idrobo, J. B. Goodenough, A. Manthiram, Chem. Mater. 2013, 25, 768.
- 134J. Nava-Avendaño, M. R. Palacín, J. Oró-Solé, A. Ponrouch, J. M. Tarascon, N. Recham, Solid State Ionics 2014, 263, 157.
- 135Y. Y. Mi, C. K. Yang, Z. C. Zuo, L. Y. Qi, C. X. Tang, W. D. Zhang, H. H. Zhou, Electrochim. Acta 2015, 176, 642.
- 136W. Wang, Y. Q. Qiao, L. He, L. Dumée, L. X. Kong, M. S. Zhao, W. M. Gao, Ionics 2015, 21, 2119.
- 137a) I. D. Johnson, E. Blagovidova, P. A. Dingwall, D. J. L. Brett, P. R. Shearing, J. A. Darr, J. Power Sources 2016, 326, 476; b) Y. Xu, M. Zhao, B. Sun, Solid State Ionics 2016, 291, 14.
- 138a) C. Jin, X. Zhang, W. He, Y. Wang, H. Li, Z. Wang, Z. Bi, RSC Adv. 2014, 4, 15332; b) R. Q. Wang, R. L. Zhang, B. Xu, F. Yang, J. S. Zhao, S. C. Zhang, J. L. Wang, J. Mater. Res. 2015, 30, 645.
- 139a) R. R. Zhao, I. M. Hung, Y. T. Li, H. Y. Chen, C. P. Lin, J. Alloys Compd. 2012, 513, 282; b) Y. Bai, Y. Yin, H. Zhao, J. Yang, D. Liu, W. Zhang, Sci. Adv. Mater. 2013, 5, 440; c) J. Song, G. Shao, M. Shi, Z. Ma, W. Song, C. Wang, S. Liu, Solid State Ionics 2013, 253, 39.
- 140Y. Hu, J. Yao, Z. Zhao, M. Zhu, L. Ying, H. Jin, H. Zhao, J. Wang, Mater. Chem. Phys. 2013, 141, 835.
- 141M. Talebi-Esfandarani, O. Savadogo, Solid State Ionics 2014, 261, 81.
- 142Y. C. Chang, C. T. Peng, I. M. Hung, Ceram. Int. 2015, 41, 5370.
- 143Z. Tian, Z. F. Zhou, S. S. Liu, F. Ye, S. J. Yao, Solid State Ionics 2015, 278, 186.
- 144J. L. Liu, R. R. Jiang, X. Y. Wang, T. Huang, A. S. Yu, J. Power Sources 2009, 194, 536.
- 145P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, A. Mauger, F. Gendron, C. M. Julien, Chem. Mater. 2009, 21, 1636.
- 146X. Qin, J. Wang, J. Xie, F. Li, L. Wen, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 2669.
- 147K. M. Ø. Jensen, M. Christensen, H. P. Gunnlaugsson, N. Lock, E. D. Bøjesen, T. Proffen, B. B. Iversen, Chem. Mater. 2013, 25, 2282.
- 148C. A. Bridges, K. L. Harrison, R. R. Unocic, J.-C. Idrobo, M. Parans Paranthaman, A. Manthiram, J. Solid State Chem. 2013, 205, 197.
- 149A. Paolella, G. Bertoni, P. Hovington, Z. Feng, R. Flacau, M. Prato, M. Colombo, S. Marras, L. Manna, S. Turner, G. Van Tendeloo, A. Guerfi, G. P. Demopoulos, K. Zaghib, Nano Energy 2015, 16, 256.
- 150A. Paolella, S. Turner, G. Bertoni, P. Hovington, R. Flacau, C. Boyer, Z. Feng, M. Colombo, S. Marras, M. Prato, L. Manna, A. Guerfi, G. P. Demopoulos, M. Armand, K. Zaghib, Nano Lett. 2016, 16, 2692.
- 151M. Y. Cho, K. B. Kim, J. W. Lee, H. Kim, H. Kim, K. Kang, K. Chul Roh, RSC Adv. 2013, 3, 3421.
- 152A. V. Radhamani, C. Karthik, R. Ubic, M. S. Ramachandra Rao, C. Sudakar, Scr. Mater. 2013, 69, 96.
- 153Y. Zou, S. Chen, X. Yang, N. Ma, Y. Xia, D. Yang, S. Guo, Adv. Energy Mater. 2016, 6, 1601549.
- 154J. J. Song, G. J. Shao, Z. P. Ma, G. L. Wang, J. Yang, Electrochim. Acta 2015, 178, 504.
- 155a) K. J. Kreder, A. Manthiram, ACS Energy Lett. 2017, 2, 64; b) L. Yang, Y. Xia, L. Qin, G. Yuan, B. Qiu, J. Shi, Z. Liu, J. Power Sources 2016, 304, 293; c) Z. Q. Huo, Y. T. Cui, D. Wang, Y. Dong, L. Chen, J. Power Sources 2014, 245, 331.
- 156a) B. K. Zou, H. Y. Wang, Z. Y. Qiang, Y. Shao, X. Sun, Z. Y. Wen, C. H. Chen, Electrochim. Acta 2016, 196, 377; b) D. H. Snydacker, C. Wolverton, J. Phys. Chem. C 2016, 120, 5932; c) L. Liao, H. Wang, H. Guo, P. Zhu, J. Xie, C. Jin, S. Zhang, G. Cao, T. Zhu, X. Zhao, J. Mater. Chem. A 2015, 3, 19368.
- 157J. Yang, Z. Li, T. Guang, M. Hu, R. Cheng, R. Wang, C. Shi, J. Chen, P. Hou, K. Zhu, X. Wang, Green Chem. 2018, 20, 5215.