Unraveling MoS2 and Transition Metal Dichalcogenides as Functional Zinc-Ion Battery Cathode: A Perspective
Corresponding Author
Wee Siang Vincent Lee
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573 Singapore
E-mail: [email protected]; [email protected]
Search for more papers by this authorTing Xiong
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573 Singapore
Search for more papers by this authorXiaopeng Wang
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573 Singapore
Search for more papers by this authorCorresponding Author
Junmin Xue
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573 Singapore
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wee Siang Vincent Lee
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573 Singapore
E-mail: [email protected]; [email protected]
Search for more papers by this authorTing Xiong
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573 Singapore
Search for more papers by this authorXiaopeng Wang
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573 Singapore
Search for more papers by this authorCorresponding Author
Junmin Xue
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573 Singapore
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The zinc-ion battery (ZIB) is considered as one of the most important alternative battery chemistries to date. However, one of the challenges in ZIB development is the limited selection of materials that can exhibit satisfactory Zn2+ storage. Transition metal dichalcogenides (TMDs) are widely investigated in energy-related applications due to their distinct physical and chemical properties. In particular, the wide interlayer spacings for these TMDs are particularly attractive as viable Zn2+ storage sites. Despite the suitability of TMDs in ZIB application, they are still not widely explored due to their limited report in this area. In this perspective review, the key challenge of TMDs, especially for MoS2, in their utilization as ZIB cathode are discussed. The various reports on MoS2 and TMDs as ZIB cathodes are also summarized. In order to elicit reasonable Zn2+ storage ability in MoS2 and TMDs, four key modification strategies are proposed: 1) interlayer engineering, 2) defect engineering, 3) hybridization, and 4) phase engineering. These proposed modification strategies may be able to address the challenge of inadequate Zn2+ storage in MoS2 and TMDs. Finally, this review ends with a conclusion and outlook of MoS2 and TMDs in the future development of ZIB cathodes.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1C. Xu, B. Li, H. Du, F. Kang, Angew. Chem., Int. Ed. 2012, 51, 933.
- 2M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.
- 3G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480.
- 4H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Nano Energy 2019, 62, 550.
- 5D. Selvakumaran, A. Pan, S. Liang, G. Cao, J. Mater. Chem. A 2019, 7, 18209.
- 6B. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 2019, 12, 3288.
- 7L. E. Blanc, D. Kundu, L. F. Nazar, Joule 2020, 4, 771.
- 8A. Konarov, N. Voronina, J. H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, ACS Energy Lett. 2018, 3, 2620.
- 9F. Wan, Z. Niu, Angew. Chem., Int. Ed. 2019, 58, 16358.
- 10T. Xiong, Y. Zhang, W. S. V. Lee, J. Xue, Adv. Energy Mater. 2020, 10, 2001769.
- 11T. Xiong, Z. G. Yu, H. Wu, Y. Du, Q. Xie, J. Chen, Y.-W. Zhang, S. J. Pennycook, W. S. V. Lee, J. Xue, Adv. Energy Mater. 2019, 9, 1803815.
- 12G. Zampardi, F. La Mantia, Curr. Opin. Electrochem. 2020, 21, 84.
- 13T. Xiong, Y. Wang, B. Yin, W. Shi, W. S. V. Lee, J. Xue, Nano-Micro Lett. 2020, 12, 8.
- 14M. Pumera, Z. Sofer, A. Ambrosi, J. Mater. Chem. A 2014, 2, 8981.
- 15B. Chen, D. Chao, E. Liu, M. Jaroniec, N. Zhao, S.-Z. Qiao, Energy Environ. Sci. 2020, 13, 1096.
- 16H. Yuan, Chin. Chem. Lett. 2017, 28, 2180.
- 17D. Voiry, J. Yang, M. Chhowalla, Adv. Mater. 2016, 28, 6197.
- 18M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.
- 19H. Wang, H. Yuan, S. Sae Hong, Y. Li, Y. Cui, Chem. Soc. Rev. 2015, 44, 2664.
- 20K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, aac9439.
- 21G. Z. Magda, J. Pető, G. Dobrik, C. Hwang, L. P. Biró, L. Tapasztó, Sci. Rep. 2015, 5, 14714.
- 22R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, M. Terrones, Acc. Chem. Res. 2015, 48, 56.
- 23T. Heine, Acc. Chem. Res. 2015, 48, 65.
- 24Y. Jung, Y. Zhou, J. J. Cha, Inorg. Chem. Front. 2016, 3, 452.
- 25J. Xu, J. Zhang, W. Zhang, C.-S. Lee, Adv. Energy Mater. 2017, 7, 1700571.
- 26K. D. Rasamani, F. Alimohammadi, Y. Sun, Mater. Today 2017, 20, 83.
- 27Y. Liang, H. D. Yoo, Y. Li, J. Shuai, H. A. Calderon, F. C. R. Hernandez, L. C. Grabow, Y. Yao, Nano Lett. 2015, 15, 2194.
- 28W. Liu, J. Hao, C. Xu, J. Mou, L. Dong, F. Jiang, Z. Kang, J. Wu, B. Jiang, F. Kang, Chem. Commun. 2017, 53, 6872.
- 29W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, Mater. Today 2017, 20, 116.
- 30Y. Zhang, L. Zhang, T. Lv, P. K. Chu, K. Huo, ChemSusChem 2020, 13, 1114.
- 31M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Chem. Soc. Rev. 2013, 42, 2986.
- 32S.-L. Li, K. Tsukagoshi, P. S. E. Orgiu, Chem. Soc. Rev. 2016, 45, 118.
- 33S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, Nat. Rev. Mater. 2017, 2, 17033.
- 34X. Zhang, Z. Lai, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 3301.
- 35Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, Phys. B 2011, 406, 2254.
- 36Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
- 37H. Li, Y. Shi, M.-H. Chiu, L.-J. Li, Nano Energy 2015, 18, 293.
- 38B. Tansel, Sep. Purif. Technol. 2012, 86, 119.
- 39J. Liu, P. Xu, J. Liang, H. Liu, W. Peng, Y. Li, F. Zhang, X. Fan, Chem. Eng. J. 2020, 389, 124405.
- 40H. Liang, Z. Cao, F. Ming, W. Zhang, D. H. Anjum, Y. Cui, L. Cavallo, H. N. Alshareef, Nano Lett. 2019, 19, 3199.
- 41H. Li, Q. Yang, F. Mo, G. Liang, Z. Liu, Z. Tang, L. Ma, J. Liu, Z. Shi, C. Zhi, Energy Storage Mater. 2019, 19, 94.
- 42W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal, Y. Xu, Y. Wang, Energy Storage Mater. 2019, 16, 527.
- 43P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Adv. Energy Mater. 2017, 7, 1601920.
- 44T. Jiao, Q. Yang, S. Wu, Z. Wang, D. Chen, D. Shen, B. Liu, J. Cheng, H. Li, L. Ma, C. Zhi, W. Zhang, J. Mater. Chem. A 2019, 7, 16330.
- 45X. Pu, T. Song, L. Tang, Y. Tao, T. Cao, Q. Xu, H. Liu, Y. Wang, Y. Xia, J. Power Sources 2019, 437, 226917.
- 46L. Wang, Z. Wu, M. Jiang, J. Lu, Q. Huang, Y. Zhang, L. Fu, M. Wu, Y. Wu, J. Mater. Chem. A 2020, 8, 9313.
- 47J. Zhang, A. Yang, X. Wu, J. van de Groep, P. Tang, S. Li, B. Liu, F. Shi, J. Wan, Q. Li, Y. Sun, Z. Lu, X. Zheng, G. Zhou, C.-L. Wu, S.-C. Zhang, M. L. Brongersma, J. Li, Y. Cui, Nat. Commun. 2018, 9, 5289.
- 48Q. Zhang, L. Mei, X. Cao, Y. Tang, Z. Zeng, J. Mater. Chem. A 2020, 8, 15417.
- 49Q. Yun, L. Li, Z. Hu, Q. Lu, B. Chen, H. Zhang, Adv. Mater. 2020, 32, 1903826.
- 50E. Benavente, M. A. Santa Ana, F. Mendizábal, G. González, Coord. Chem. Rev. 2002, 224, 87.
- 51S. Yazdani, M. Yarali, J. J. Cha, Nano Res. 2019, 12, 2126.
- 52M. S. Whittingham, Prog. Solid State Chem. 1978, 12, 41.
- 53A. D. Yoffe, Solid State Ionics 1983, 9–10, 59.
- 54Y. Wang, J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, S. Zhuiykov, N. V. Medhekar, M. S. Strano, K. Kalantar-zadeh, ACS Nano 2013, 7, 10083.
- 55R. H. Friend, A. D. Yoffe, Adv. Phys. 1987, 36, 1.
- 56R. B. Somoano, V. Hadek, A. Rembaum, J. Chem. Phys. 1973, 58, 697.
- 57X. Wang, X. Shen, Z. Wang, R. Yu, L. Chen, ACS Nano 2014, 8, 11394.
- 58J. P. Motter, K. J. Koski, Y. Cui, Chem. Mater. 2014, 26, 2313.
- 59Z. Chen, K. Leng, X. Zhao, S. Malkhandi, W. Tang, B. Tian, L. Dong, L. Zheng, M. Lin, B. S. Yeo, K. P. Loh, Nat. Commun. 2017, 8, 14548.
- 60S. Lemaux, A. Golub, P. Gressier, G. Ouvrard, J. Solid State Chem. 1999, 147, 336.
- 61F. Wang, M. Zheng, B. Zhang, C. Zhu, Q. Li, L. Ma, W. Shen, Sci. Rep. 2016, 6, 31092.
- 62E. W. Ong, J. Eckert, L. A. Dotson, W. S. Glaunsinger, Chem. Mater. 1994, 6, 1946.
- 63F. R. Gamble, J. H. Osiecki, M. Cais, R. Pisharody, F. J. DiSalvo, T. H. Geballe, Science 1971, 174, 493.
- 64C. L. Wan, X. K. Gu, F. Dang, T. Itoh, Y. F. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G. J. Snyder, R. G. Yang, K. Koumoto, Nat. Mater. 2015, 14, 622.
- 65Y. F. Li, Y. L. Liang, F. C. Robles Hernandez, H. D. Yoo, Q. Y. An, Y. Yao, Nano Energy 2015, 15, 453.
- 66A. H. Loo, A. Bonanni, Z. Sofer, M. Pumera, Electrochem. Commun. 2015, 50, 39.
- 67S. Mukherjee, J. Turnley, E. Mansfield, J. Holm, D. Soares, L. David, G. Singh, R. Soc. Open Sci. 2019, 6, 190437.
- 68H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, H. Zhang, Small 2013, 9, 1974.
- 69G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, J. N. Coleman, ACS Nano 2012, 6, 3468.
- 70X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Li, M. A. Nguyen, M. Terrones, T. E. Mallouk, Nano Lett. 2015, 15, 5956.
- 71G. S. Bang, K. W. Nam, J. Y. Kim, J. Shin, J. W. Choi, S. Y. Choi, ACS Appl. Mater. Interfaces 2014, 6, 7084.
- 72Q. D. Truong, M. Kempaiah Devaraju, Y. Nakayasu, N. Tamura, Y. Sasaki, T. Tomai, I. Honma, ACS Omega 2017, 2, 2360.
- 73Z. Lin, B. R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M. A. Pimenta, M. Terrones, 2D Mater. 2016, 3, 022002.
- 74Y. Cai, H. Zhou, G. Zhang, Y.-W. Zhang, Chem. Mater. 2016, 28, 8611.
- 75Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Chem. Soc. Rev. 2018, 47, 3100.
- 76H. Shu, D. Zhou, F. Li, D. Cao, X. Chen, ACS Appl. Mater. Interfaces 2017, 9, 42688.
- 77S.-S. Chee, W.-J. Lee, Y.-R. Jo, M. K. Cho, D. Chun, H. Baik, B.-J. Kim, M.-H. Yoon, K. Lee, M.-H. Ham, Adv. Funct. Mater. 2020, 30, 1908147.
- 78W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, J.-C. Idrobo, Nano Lett. 2013, 13, 2615.
- 79H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, X. Zheng, Nat. Mater. 2016, 15, 48.
- 80B. Balasubramaniam, N. Singh, P. Kar, A. Tyagi, J. Prakash, R. K. Gupta, Mol. Syst. Des. Eng. 2019, 4, 804.
- 81M. Yamamoto, S. Dutta, S. Aikawa, S. Nakaharai, K. Wakabayashi, M. S. Fuhrer, K. Ueno, K. Tsukagoshi, Nano Lett. 2015, 15, 2067.
- 82H. Nan, R. Zhou, X. Gu, S. Xiao, K. K. Ostrikov, Nanoscale 2019, 11, 19202.
- 83D. Liu, Y. Guo, L. Fang, J. Robertson, Appl. Phys. Lett. 2013, 103, 183113.
- 84E. W. K. Koh, C. H. Chiu, Y. K. Lim, Y.-W. Zhang, H. Pan, Int. J. Hydrogen Energy 2012, 37, 4170.
- 85K. Yao, Z. Xu, J. Huang, M. Ma, L. Fu, X. Shen, J. Li, M. Fu, Small 2019, 15, 1805405.
- 86J. Liang, Z. Wei, C. Wang, J. Ma, Electrochim. Acta 2018, 285, 301.
- 87Y. Li, R. Zhang, X. Wu, W. Zhou, H. Zhang, J. Zhang, ACS Nano 2019, 13, 5533.
- 88C. Tan, H. Zhang, Chem. Soc. Rev. 2015, 44, 2713.
- 89Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 2016, 28, 1917.
- 90T. D. Thanh, N. D. Chuong, H. V. Hien, T. Kshetri, L. H. Tuan, N. H. Kim, J. H. Lee, Prog. Mater. Sci. 2018, 96, 51.
- 91J. Yang, J. X. Zhu, J. S. Xu, C. Zhang, T. Liu, ACS Appl. Mater. Interfaces 2017, 9, 44550.
- 92K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, J. Xu, Adv. Mater. 2015, 27, 6431.
- 93P. G. Whitten, G. M. Spinks, G. G. Wallace, Carbon 2005, 43, 1891.
- 94D. Chen, L. H. Tang, J. H. Li, Chem. Soc. Rev. 2010, 39, 3157.
- 95N. A. Kumar, M. A. Dar, R. Gul, J. B. Baek, Mater. Today 2015, 18, 286.
- 96X. Shang, J. Chi, S. Lu, J. Gou, B. Dong, X. Li, Y. Liu, K. Yan, Y. Chai, C. Liu, Appl. Surf. Sci. 2017, 392, 708.
- 97G. C. Huang, T. Chen, W. X. Chen, Z. Wang, K. Chang, L. Ma, F. H. Huang, D. Y. Chen, J. Y. Lee, Small 2013, 9, 3693.
- 98X. Lin, D. Xue, L. Zhao, F. Zong, X. Duan, X. Pan, J. Zhang, Q. Li, Chem. Eng. J. 2019, 356, 483.
- 99J. Ren, R.-P. Ren, Y.-K. Lv, Chem. Eng. J. 2018, 353, 419.
- 100K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, ACS Nano 2014, 8, 7078.
- 101H. Liu, F. Zhang, W. Li, X. Zhang, C.-S. Lee, W. Wang, Y. Tang, Electrochim. Acta 2015, 167, 132.
- 102Y. Chen, B. Song, X. Tang, L. Lu, J. Xue, Small 2014, 10, 1536.
- 103P. Prabhu, V. Jose, J.-M. Lee, Matter 2020, 2, 526.
- 104P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng, J. Wan, H. Lei, X. Zhao, J. Mater. Chem. A 2014, 2, 2742.
- 105J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, D. Y. Kim, Small 2014, 10, 2319.
- 106W. Kang, Y. Wang, D. Cao, Z. Kang, D. Sun, J. Alloys Compd. 2018, 743, 410.
- 107X. Huang, B. Zheng, Z. Liu, C. Tan, J. Liu, B. Chen, H. Li, J. Chen, X. Zhang, Z. Fan, W. Zhang, Z. Guo, F. Huo, Y. Yang, L.-H. Xie, W. Huang, H. Zhang, ACS Nano 2014, 8, 8695.
- 108Z. Yin, X. Zhang, Y. Cai, J. Chen, J. I. Wong, Y.-Y. Tay, J. Chai, J. Wu, Z. Zeng, B. Zheng, H. Y. Yang, H. Zhang, Angew. Chem., Int. Ed. 2014, 53, 12560.
- 109C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang, Y. Gogotsi, Angew. Chem., Int. Ed. 2018, 57, 1846.
- 110K. Leng, Z. Chen, X. Zhao, W. Tang, B. Tian, C. T. Nai, W. Zhou, K. P. Loh, ACS Nano 2016, 10, 9208.
- 111D. Voiry, A. Mohite, M. Chhowalla, Chem. Soc. Rev. 2015, 44, 2702.
- 112P. Ganal, W. Olberding, T. Butz, G. Ouvrard, Solid State Ionics 1993, 59, 313.
- 113T. Fujita, Y. Ito, Y. Tan, H. Yamaguchi, D. Hoko, A. Hirata, D. A. Voiry, M. Chhowalla, M. Chen, Nanoscale 2014, 6, 12458.
- 114H.-L. Tsai, J. Heising, J. L. Schindler, C. R. Kannewurf, M. G. Kanatzidis, Chem. Mater. 1997, 9, 879.
- 115Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. 2011, 123, 11289.