Strategies to Develop Earth-Abundant Heterogeneous Oxygen Evolution Reaction Catalysts for pH-Neutral or pH-Near-Neutral Electrolytes
Yan Dong
Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, 205 Energy and Environment Laboratory Hastings Rd, University Park, PA, 16802 USA
Search for more papers by this authorCorresponding Author
Sridhar Komarneni
Department of Ecosystem Science and Management and Materials Research Institute, The Pennsylvania State University, 204 Energy and Environment Laboratory Hastings Rd, University Park, PA, 16802 USA
E-mail: [email protected]
Search for more papers by this authorYan Dong
Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, 205 Energy and Environment Laboratory Hastings Rd, University Park, PA, 16802 USA
Search for more papers by this authorCorresponding Author
Sridhar Komarneni
Department of Ecosystem Science and Management and Materials Research Institute, The Pennsylvania State University, 204 Energy and Environment Laboratory Hastings Rd, University Park, PA, 16802 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
The anodic oxygen evolution reaction (OER) is the bottleneck of water splitting to produce hydrogen due to its sluggish kinetics. In order to lower the energy cost, highly active and cost-efficient OER catalysts need to be used to overcome the OER reaction barrier, especially in neutral pH. Compared to alkaline or acidic electrolytes, pH-neutral or pH-near-neutral electrolytes are considered to be cheaper and safer, and water from rivers and the sea could be used directly under such conditions. However, OER under neutral pH is challenging compared to the OER catalysts for alkaline conditions. Therefore, OER catalysts for neutral or near-neutral pH have not been pursued significantly and, hence, there are limited advances in this area. Here, the progress made in the research and development of earth-abundant heterogeneous catalysts for OER in three pH-neutral or pH-near-neutral systems, namely, the phosphate system, the carbonate system, and the borate system, are systematically reviewed and summarized for the first time. Strategies to develop high-performance OER catalysts for neutral pH are reviewed and summarized. In addition, future challenges and opportunities in this field are discussed, which may shed some light on the future developments of earth-abundant heterogeneous catalysts for OER in neutral or near-neutral pH.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
- 2M. Dincă, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2010, 107, 10337.
- 3M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
- 4Q. Lu, F. Jiao, Nano Energy 2016, 29, 439.
- 5M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Energy Mater. 2018, 8, 1800124.
- 6B. M. Hunter, H. B. Gray, A. M. Müller, Chem. Rev. 2016, 116, 14120.
- 7Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 8N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.
- 9Y. Surendranath, M. W. Kanan, D. G. Nocera, J. Am. Chem. Soc. 2010, 132, 16501.
- 10D. K. Bediako, Y. Surendranath, D. G. Nocera, J. Am. Chem. Soc. 2013, 135, 3662.
- 11A. J. Esswein, Y. Surendranath, S. Y. Reece, D. G. Nocera, Energy Environ. Sci. 2011, 4, 499.
- 12L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden, X. Feng, ACS Catal. 2018, 8, 9312.
- 13J. Wang, L. Yu, L. Hu, G. Chen, H. Xin, X. Feng, Nat. Commun. 2018, 9, 1795.
- 14M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329.
- 15J. Y. C. Chen, J. T. Miller, J. B. Gerken, S. S. Stahl, Energy Environ. Sci. 2014, 7, 1382.
- 16L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744.
- 17M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc. 2015, 137, 3638.
- 18Y. Pi, Q. Shao, P. Wang, F. Lv, S. Guo, J. Guo, X. Huang, Angew. Chem., Int. Ed. 2017, 56, 4502.
- 19M. Yao, N. Wang, W. Hu, S. Komarneni, Appl. Catal., B 2018, 233, 226.
- 20A. Vojvodic, J. K. Nørskov, Science 2011, 334, 1355.
- 21J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater. 2016, 6, 1502313.
- 22G. Liu, D. He, R. Yao, Y. Zhao, J. Li, Nano Res. 2018, 11, 1664.
- 23P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 14710.
- 24Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano 2018, 12, 245.
- 25X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Energy Mater. 2016, 6, 1502585.
- 26Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R. S. Rawat, H. J. Fan, Angew. Chem., Int. Ed. 2016, 55, 8670.
- 27M. Yao, B. Sun, N. Wang, W. Hu, S. Komarneni, Appl. Surf. Sci. 2019, 480, 655.
- 28J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu, W. Xing, ACS Catal. 2015, 5, 6874.
- 29L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 2015, 8, 2347.
- 30X.-Y. Yu, Y. Feng, B. Guan, Energy Environ. Sci. 2016, 9, 1246.
- 31L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, J. Am. Chem. Soc. 2015, 137, 14023.
- 32W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci. 2013, 6, 2921.
- 33M. Yao, B. Sun, L. He, N. Wang, W. Hu, S. Komarneni, ACS Sustainable Chem. Eng. 2019, 7, 5430.
- 34X. Xu, F. Song, X. Hu, Nat. Commun. 2016, 7, 12324.
- 35T. Liu, Q. Liu, A. M. Asiri, Y. Luo, X. Sun, Chem. Commun. 2015, 51, 16683.
- 36Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, J. Am. Chem. Soc. 2014, 136, 15670.
- 37X. Lu, W.-L. Yim, B. H. R. Suryanto, C. Zhao, J. Am. Chem. Soc. 2015, 137, 2901.
- 38R. Li, Z. Wei, X. Gou, ACS Catal. 2015, 5, 4133.
- 39K. Qu, Y. Zheng, S. Dai, S. Z. Qiao, Nano Energy 2016, 19, 373.
- 40L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai, Z. Wang, S. Zhao, M. Han, K. Gao, M. Lu, X. Xie, B. Chen, Z. Liu, X. Wang, H. Zhang, H. Li, J. Liu, H. Zhang, X. Huang, W. Huang, ACS Nano 2017, 11, 5800.
- 41S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
- 42B. Y. Xia, Y. Yan, N. Li, H. Bin Wu, Nat. Energy 2016, 1, 15006.
- 43C. Hu, L. Dai, Adv. Mater. 2017, 29, 1604942.
- 44M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z. L. Wang, Nano Energy 2017, 37, 136.
- 45J. S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 2018, 8, 1702774.
- 46R. Gao, D. Yan, Adv. Energy Mater. 2019, 0, 1900954.
- 47L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Adv. Energy Mater. 2019, 9, 1803358.
- 48S. Sultan, J. N. Tiwari, A. N. Singh, S. Zhumagali, M. Ha, C. W. Myung, P. Thangavel, K. S. Kim, Adv. Energy Mater. 2019, 9, 1900624.
- 49P. Li, R. Zhao, H. Chen, H. Wang, P. Wei, H. Huang, Q. Liu, T. Li, X. Shi, Y. Zhang, M. Liu, X. Sun, Small 2019, 15, 1805103.
- 50M. W. Kanan, Y. Surendranath, D. G. Nocera, Chem. Soc. Rev. 2009, 38, 109.
- 51M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
- 52D. A. Lutterman, Y. Surendranath, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 3838.
- 53J. He, Y. Peng, Z. Sun, W. Cheng, Q. Liu, Y. Feng, Y. Jiang, F. Hu, Z. Pan, Q. Bian, S. Wei, Electrochim. Acta 2014, 119, 64.
- 54Y. Surendranath, M. Dinc, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 2615.
- 55M. W. Kanan, J. Yano, Y. Surendranath, M. Dincă, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2010, 132, 13692.
- 56M. Risch, V. Khare, I. Zaharieva, L. Gerencser, P. Chernev, H. Dau, J. Am. Chem. Soc. 2009, 131, 6936.
- 57M. Risch, K. Klingan, F. Ringleb, P. Chernev, I. Zaharieva, A. Fischer, H. Dau, ChemSusChem 2012, 5, 542.
- 58L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A. M. Asiri, X. Sun, Angew. Chem., Int. Ed. 2017, 56, 1064.
- 59L. Cui, D. Liu, S. Hao, F. Qu, G. Du, J. Liu, A. M. Asiri, X. Sun, Nanoscale 2017, 9, 3752.
- 60T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A. M. Asiri, X. Sun, L. Chen, ChemElectroChem 2017, 4, 1840.
- 61B. Zhang, Y. H. Lui, L. Zhou, X. Tang, S. Hu, J. Mater. Chem. A 2017, 5, 13329.
- 62L. Zhang, B. Liu, N. Zhang, M. Ma, Nano Res. 2018, 11, 323.
- 63H. S. Ahn, T. D. Tilley, Adv. Funct. Mater. 2013, 23, 227.
- 64H. Chen, Y. Gao, L. Sun, ChemCatChem 2016, 8, 2757.
- 65S. Cobo, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 2012, 11, 802.
- 66P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu, Y. Xie, Angew. Chem., Int. Ed. 2016, 55, 2488.
- 67P. Li, Z. Jin, D. Xiao, J. Mater. Chem. A 2014, 2, 18420.
- 68Y. Zhao, S. Chen, B. Sun, D. Su, X. Huang, H. Liu, Y. Yan, K. Sun, G. Wang, Sci. Rep. 2015, 5, 7629.
- 69J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng, Y. Xie, Nano Res. 2012, 5, 521.
- 70Y. Zhang, B. Cui, Z. Qin, H. Lin, J. Li, Nanoscale 2013, 5, 6826.
- 71G. P. Gardner, Y. B. Go, D. M. Robinson, P. F. Smith, J. Hadermann, A. Abakumov, M. Greenblatt, G. C. Dismukes, Angew. Chem., Int. Ed. 2012, 51, 1616.
- 72S. W. Lee, C. Carlton, M. Risch, Y. Surendranath, S. Chen, S. Furutsuki, A. Yamada, D. G. Nocera, Y. Shao-Horn, J. Am. Chem. Soc. 2012, 134, 16959.
- 73W. H. Bragg, Nature 1915, 95, 561.
- 74J. P. Jacobs, A. Maltha, J. G. H. Reintjes, J. Drimal, V. Ponec, H. H. Brongersma, J. Catal. 1994, 147, 294.
- 75Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou, Y. Xie, Angew. Chem. 2015, 127, 11383.
10.1002/ange.201505320 Google Scholar
- 76J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.
- 77P. Cai, J. Huang, J. Chen, Z. Wen, Angew. Chem., Int. Ed. 2017, 56, 4858.
- 78H. B. Aiyappa, J. Thote, D. B. Shinde, R. Banerjee, S. Kurungot, Chem. Mater. 2016, 28, 4375.
- 79S. Pintado, S. Goberna-Ferrón, E. C. Escudero-Adán, J. R. Galán-Mascarós, J. Am. Chem. Soc. 2013, 135, 13270.
- 80M. Morita, C. Iwakura, H. Tamura, Electrochim. Acta 1977, 22, 325.
- 81M. Morita, C. Iwakura, H. Tamura, Electrochim. Acta 1979, 24, 639.
- 82A. M. Mohammad, M. I. Awad, M. S. El-Deab, T. Okajima, T. Ohsaka, Electrochim. Acta 2008, 53, 4351.
- 83K. Izumiya, E. Akiyama, H. Habazaki, N. Kumagai, A. Kawashima, K. Hashimoto, Electrochim. Acta 1998, 43, 3303.
- 84A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, M. Driess, Angew. Chem., Int. Ed. 2013, 52, 13206.
- 85D. M. Robinson, Y. B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2013, 135, 3494.
- 86T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 1519.
- 87T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 18153.
- 88J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang, K. T. Nam, J. Am. Chem. Soc. 2014, 136, 4201.
- 89K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park, D. Kim, N.-E. Sung, S. H. Kim, S. Han, K. T. Nam, J. Am. Chem. Soc. 2014, 136, 7435.
- 90D. Jeong, K. Jin, S. E. Jerng, H. Seo, D. Kim, S. H. Nahm, S. H. Kim, K. T. Nam, ACS Catal. 2015, 5, 4624.
- 91K. Jin, A. Chu, J. Park, D. Jeong, S. E. Jerng, U. Sim, H.-Y. Jeong, C. W. Lee, Y.-S. Park, K. D. Yang, G. Kumar Pradhan, D. Kim, N.-E. Sung, S. Hee Kim, K. T. Nam, Sci. Rep. 2015, 5, 10279.
- 92A. Bergmann, I. Zaharieva, H. Dau, P. Strasser, Energy Environ. Sci. 2013, 6, 2745.
- 93A. Ramírez, P. Hillebrand, D. Stellmach, M. M. May, P. Bogdanoff, S. Fiechter, J. Phys. Chem. C 2014, 118, 14073.
- 94I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, H. Dau, Energy Environ. Sci. 2012, 5, 7081.
- 95M. V. Abrashev, P. Chernev, P. Kubella, M. R. Mohammadi, C. Pasquini, H. Dau, I. Zaharieva, J. Mater. Chem. A 2019, 7, 17022.
- 96Y. Wu, M. Chen, Y. Han, H. Luo, X. Su, M.-T. Zhang, X. Lin, J. Sun, L. Wang, L. Deng, W. Zhang, R. Cao, Angew. Chem., Int. Ed. 2015, 54, 4870.
- 97M. Chen, Y. Wu, Y. Han, X. Lin, J. Sun, W. Zhang, R. Cao, ACS Appl. Mater. Interfaces 2015, 7, 21852.
- 98H.-C. Chiu, W.-H. Huang, L.-C. Hsu, Y.-G. Lin, Y.-H. Lai, C.-Y. Lin, Sustainable Energy Fuels 2018, 2, 271.
- 99H. Schäfer, K. Küpper, J. Wollschläger, N. Kashaev, J. Hardege, L. Walder, S. Mohsen Beladi-Mousavi, B. Hartmann-Azanza, M. Steinhart, S. Sadaf, F. Dorn, ChemSusChem 2015, 8, 3099.
- 100H. Schäfer, D. M. Chevrier, K. Kuepper, P. Zhang, J. Wollschlaeger, D. Daum, M. Steinhart, C. Heß, U. Krupp, K. Müller-Buschbaum, J. Stangl, M. Schmidt, Energy Environ. Sci. 2016, 9, 2609.
- 101Y. Zhang, B. Cui, C. Zhao, H. Lin, J. Li, Phys. Chem. Chem. Phys. 2013, 15, 7363.
- 102J. Liu, D. Zhu, T. Ling, A. Vasileff, S.-Z. Qiao, Nano Energy 2017, 40, 264.
- 103B. Zhang, Y. H. Lui, H. Ni, S. Hu, Nano Energy 2017, 38, 553.
- 104R. D. L. Smith, M. S. Prévot, R. D. Fagan, S. Trudel, C. P. Berlinguette, J. Am. Chem. Soc. 2013, 135, 11580.
- 105M. Görlin, J. Ferreira de Araújo, H. Schmies, D. Bernsmeier, S. Dresp, M. Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 2017, 139, 2070.
- 106N. Li, D. K. Bediako, R. G. Hadt, D. Hayes, T. J. Kempa, F. von Cube, D. C. Bell, L. X. Chen, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2017, 114, 1486.
- 107H. S. Ahn, A. J. Bard, J. Am. Chem. Soc. 2015, 137, 612.
- 108S. Zou, M. S. Burke, M. G. Kast, J. Fan, N. Danilovic, S. W. Boettcher, Chem. Mater. 2015, 27, 8011.
- 109M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, S. W. Boettcher, J. Phys. Chem. Lett. 2015, 6, 3737.
- 110C. Feng, M. B. Faheem, J. Fu, Y. Xiao, C. Li, Y. Li, ACS Catal. 2020, 10, 4019.
- 111K. Zhu, X. Zhu, W. Yang, Angew. Chem., Int. Ed. 2019, 58, 1252.
- 112A. M. Smith, L. Trotochaud, M. S. Burke, S. W. Boettcher, Chem. Commun. 2015, 51, 5261.
- 113B. Han, M. Risch, Y.-L. Lee, C. Ling, H. Jia, Y. Shao-Horn, Phys. Chem. Chem. Phys. 2015, 17, 22576.
- 114K. S. Joya, K. Takanabe, H. J. M. de Groot, Adv. Energy Mater. 2014, 4, 1400252.
- 115K. S. Joya, Y. F. Joya, H. J. M. de Groot, Adv. Energy Mater. 2014, 4, 1301929.
- 116R. Ge, M. Ma, X. Ren, F. Qu, Z. Liu, G. Du, A. M. Asiri, L. Chen, B. Zheng, X. Sun, Chem. Commun. 2017, 53, 7812.
- 117F. Xie, H. Wu, J. Mou, D. Lin, C. Xu, C. Wu, X. Sun, J. Catal. 2017, 356, 165.
- 118S. K. Pilli, K. Summers, D. Chidambaram, RSC Adv. 2015, 5, 47080.
- 119Z. Chen, T. J. Meyer, Angew. Chem., Int. Ed. 2013, 52, 700.
- 120D. K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2012, 134, 6801.
- 121M. Risch, K. Klingan, J. Heidkamp, D. Ehrenberg, P. Chernev, I. Zaharieva, H. Dau, Chem. Commun. 2011, 47, 11912.
- 122M. Yoshida, Y. Mitsutomi, T. Mineo, M. Nagasaka, H. Yuzawa, N. Kosugi, H. Kondoh, J. Phys. Chem. C 2015, 119, 19279.
- 123C. He, X. Wu, Z. He, J. Phys. Chem. C 2014, 118, 4578.
- 124X. Ji, L. Cui, D. Liu, S. Hao, J. Liu, F. Qu, Y. Ma, G. Du, A. M. Asiri, X. Sun, Chem. Commun. 2017, 53, 3070.
- 125X. Ma, M. Ma, D. Liu, S. Hao, F. Qu, G. Du, A. M. Asiri, X. Sun, ChemCatChem 2017, 9, 3138.
- 126M. Ma, D. Liu, S. Hao, R. Kong, G. Du, A. M. Asiri, Y. Yao, X. Sun, Inorg. Chem. Front. 2017, 4, 840.
- 127R. Ge, X. Ren, F. Qu, D. Liu, M. Ma, S. Hao, G. Du, A. M. Asiri, L. Chen, X. Sun, Chem. - Eur. J. 2017, 23, 6959.
- 128M. Ma, F. Qu, X. Ji, D. Liu, S. Hao, G. Du, A. M. Asiri, Y. Yao, L. Chen, X. Sun, Small 2017, 13, 1700394.
- 129L. Cui, F. Qu, J. Liu, G. Du, A. M. Asiri, X. Sun, ChemSusChem 2017, 10, 1370.
- 130X. Ren, R. Ge, Y. Zhang, D. Liu, D. Wu, X. Sun, B. Du, Q. Wei, J. Mater. Chem. A 2017, 5, 7291.
- 131X. Ji, S. Hao, F. Qu, J. Liu, G. Du, A. M. Asiri, L. Chen, X. Sun, Nanoscale 2017, 9, 7714.
- 132G. Zhu, R. Ge, F. Qu, G. Du, A. M. Asiri, Y. Yao, X. Sun, J. Mater. Chem. A 2017, 5, 6388.
- 133C. You, Y. Ji, Z. Liu, X. Xiong, X. Sun, ACS Sustainable Chem. Eng. 2018, 6, 1527.
- 134A. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach, L. Spiccia, Energy Environ. Sci. 2013, 6, 579.
- 135X. Cao, L. Cui, X. Wang, W. Yang, J. Liu, ChemCatChem 2018, 10, 2826.
- 136X. Yu, T. Hua, X. Liu, Z. Yan, P. Xu, P. Du, ACS Appl. Mater. Interfaces 2014, 6, 15395.
- 137D. R. Chowdhury, L. Spiccia, S. S. Amritphale, A. Paul, A. Singh, J. Mater. Chem. A 2016, 4, 3655.
- 138X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu, P. Du, Electrochem. Commun. 2014, 46, 1.
- 139F. Yu, F. Li, B. Zhang, H. Li, L. Sun, ACS Catal. 2015, 5, 627.
- 140X. Liu, S. Cui, Z. Sun, P. Du, Electrochim. Acta 2015, 160, 202.
- 141J. Xie, R. Wang, J. Bao, X. Zhang, H. Zhang, S. Li, Y. Xie, Inorg. Chem. Front. 2014, 1, 751.
- 142Q. Wang, D. O'Hare, Chem. Rev. 2012, 112, 4124.
- 143F. Song, X. Hu, Nat. Commun. 2014, 5, 4477.
- 144N. Han, F. Zhao, Y. Li, J. Mater. Chem. A 2015, 3, 16348.
- 145M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452.
- 146M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Nano Energy 2018, 44, 181.
- 147C. Zhang, M. Shao, L. Zhou, Z. Li, K. Xiao, M. Wei, ACS Appl. Mater. Interfaces 2016, 8, 33697.
- 148M. Luo, Z. Cai, C. Wang, Y. Bi, L. Qian, Y. Hao, L. Li, Y. Kuang, Y. Li, X. Lei, Z. Huo, W. Liu, H. Wang, X. Sun, X. Duan, Nano Res. 2017, 10, 1732.
- 149J. A. Carrasco, R. Sanchis-Gual, A. S.-D. Silva, G. Abellán, E. Coronado, Chem. Mater. 2019, 31, 6798.
- 150B. M. Hunter, W. Hieringer, J. R. Winkler, H. B. Gray, A. M. Müller, Energy Environ. Sci. 2016, 9, 1734.
- 151L. Dang, H. Liang, J. Zhuo, B. K. Lamb, H. Sheng, Y. Yang, S. Jin, Chem. Mater. 2018, 30, 4321.
- 152A. N. Ay, B. Zümreoglu-Karan, A. Temel, L. Mafra, Appl. Clay Sci. 2011, 51, 308.
- 153Y. Dong, S. Komarneni, N. Wang, W. Hu, W. Huang, J. Mater. Chem. A 2019, 7, 6995.
- 154Y. Dong, S. Komarneni, F. Zhang, N. Wang, M. Terrones, W. Hu, W. Huang, Appl. Catal., B 2019, 263, 118343.
- 155Z.-P. Nie, D.-K. Ma, G.-Y. Fang, W. Chen, S.-M. Huang, J. Mater. Chem. A 2016, 4, 2438.