Reactive Polymers of Intrinsic Microporous Aerogels for Rapid Mustard Gas Detoxification
Lirui Si
Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620 China
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
Search for more papers by this authorJie Zhu
School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, 201620 China
Search for more papers by this authorPeixin Tang
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
Search for more papers by this authorMd All Amin Newton
School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, 201620 China
Search for more papers by this authorYang Si
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
Search for more papers by this authorJianyong Yu
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
Search for more papers by this authorCorresponding Author
Xueli Wang
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zijian Dai
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLirui Si
Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620 China
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
Search for more papers by this authorJie Zhu
School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, 201620 China
Search for more papers by this authorPeixin Tang
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
Search for more papers by this authorMd All Amin Newton
School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai, 201620 China
Search for more papers by this authorYang Si
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
Search for more papers by this authorJianyong Yu
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
Search for more papers by this authorCorresponding Author
Xueli Wang
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zijian Dai
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Polymers of intrinsic microporosity (PIMs) have broad application prospects in the detoxification of chemical warfare agents (CWAs) due to their unique pore structure, good tunable reactivity, and solution processability. However, its pore structure is relatively homogeneous, resulting in high resistance to mass transfer. Here, inspired by fractal structure in nature, a structure engineering strategy is proposed to develop 3D reactive nanofibrous aerogels featuring hierarchical porous structures to minimize mass transfer resistance. These aerogels are fabricated with amidoxime-modified PIM-1 (AO-PIM-1) nanofibers serving as building units and flexible SiO2 nanofibers acting as reinforcement. The macro/mesopores of amidoxime-modified PIM-1 nanofibrous aerogels (APAs) originating from freeze-shaping and electrospinning provide interconnected channels for the diffusion of CWAs, and the intrinsic micropores of AO-PIM-1 can effectively trap and anchor adsorbate molecules. In addition, the reactivity of the APAs can be activated by chlorine bleaching. This process forms an N-chlorine structure, which effectively oxidizes the adsorbed CWAs simulant 2-chloroethyl ethyl sulfide (CEES) by APAs, converting them into non-toxic products. The resulting aerogels have the properties of ultralight weight (8 mg cm−3), reversible compression strain of 60%, and repeatable sulfur mustard decontamination (half-life of 1.27 min). These characteristics indicate significant potential for the use in protective materials against vesicant CWAs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202503608-sup-0001-SuppMat.docx2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. K. Sydnes, Nature 2013, 496, 25.
- 2A. Nair, P. Yadav, A. Behl, R. K. Sharma, S. Kulshrestha, B. S. Butola, N. Sharma, Chem.-Biol. Interact. 2021, 350, 109654.
- 3P. S. Pauletto, D. A. Giannakoudakis, M. Florent, T. J. Bandosz, Carbon 2024, 230, 119673.
- 4N. Bui, E. R. Meshot, S. Kim, J. Peña, P. W. Gibson, K. J. Wu, F. Fornasiero, Adv. Mater. 2016, 28, 5871.
- 5D. Jung, P. Das, A. Atilgan, P. Li, J. T. Hupp, T. Islamoglu, J. A. Kalow, O. K. Farha, Chem. Mater. 2020, 32, 9299.
- 6Z. Yan, F. Zhang, X. Liu, L. Liu, Y. Si, J. Yu, P. Zhang, B. Ding, ACS Appl. Mater. Interfaces 2021, 13, 47835.
- 7N. Jiang, H. Liu, G. Zhao, H. Li, S. Yang, X. Xu, X. Zhuang, B. Cheng, J. Colloid Interface Sci. 2023, 640, 192.
- 8T. H. Mahato, B. Singh, A. K. Srivastava, G. K. Prasad, A. R. Srivastava, K. Ganesan, R. Vijayaraghavan, J. Hazard. Mater. 2011, 192, 1890.
- 9R. B. Balow, J. G. Lundin, G. C. Daniels, W. O. Gordon, M. McEntee, G. W. Peterson, J. H. Wynne, P. E. Pehrsson, ACS Appl. Mater. Interfaces 2017, 9, 39747.
- 10X. Huang, H. Wang, L. Kong, Z. Chen, J. Zhang, Y. Zuo, W. Chen, J. Hazard. Mater. 2024, 480, 136203.
- 11J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, C. J. Oldham, H. J. Walls, G. W. Peterson, G. N. Parsons, Angew. C. Int. Ed. 2016, 55, 13224.
- 12T. Islamoglu, Z. Chen, M. C. Wasson, C. T. Buru, K. O. Kirlikovali, U. Afrin, M. R. Mian, O. K. Farha, Chem. Rev. 2020, 120, 8130.
- 13D. T. Lee, Z. Dai, G. W. Peterson, M. G. Hall, N. L. Pomerantz, N. Hoffman, G. N. Parsons, Adv. Funct. Mater. 2022, 32, 2108004.
- 14P. Guo, W. Guo, Y. Li, H. Qin, Y. Yang, H. Li, Y. An, W. Yang, H. Zhang, J. Yang, J. Kang, R. Wang, ACS Appl. Mater. Interfaces 2024, 16, 52842.
- 15J. Yin, C. Huang, Y. Zhou, L. Zhang, N. Li, R. Sun, Ind. Eng. Chem. Res. 2022, 61, 7699.
- 16L. Bromberg, X. Su, V. Martis, Y. Zhang, T. A. Hatton, ACS Appl. Mater. Interfaces 2016, 8, 17555.
- 17N. Méndez-Gil, S. Gámez-Valenzuela, M. Echeverri, G. H. Suyo, M. Iglesias, M. C. R. Delgado, B. Gómez-Lor, Adv. Funct. Mater. 2024, 34, 2316754.
- 18J. Y. Seo, Y. Song, J.-H. Lee, H. Kim, S. Cho, K.-Y. Baek, ACS Appl. Mater. Interfaces 2021, 13, 33516.
- 19D. T. Lee, J. D. Jamir, G. W. Peterson, G. N. Parsons, Matter 2020, 2, 404.
- 20F. A. Son, K. Shi, R. Q. Snurr, O.r K. Farha, ACS Appl. Mater. Interfaces 2024, 16, 31534.
- 21Z. Yan, X. Liu, B. Ding, J. Yu, Y. Si, Nat Commun. 2023, 14, 2116.
- 22M. O. Abdelmigeed, J. J. Mahle, G. W. Peterson, G. N. Parsons, Small 2024, 20, 2405831.
- 23S. E. Morgan, M. L. Willis, G. Dianat, G. W. Peterson, J. J. Mahle, G. N. Parsons, ChemSusChem 2023, 16, 202201744.
- 24Q. Wang, Sun, Z. Z., M. Zhao, S. Luo, P. Gong, C. Liu, W. Zang, J. Am. Chem. Soc. 2022, 144, 21046.
- 25Y. H. Cheung, K. Ma, H. C. Van Leeuwen, M. C. Wasson, X. Wang, K. B. Idrees, W. Gong, R. Cao, J. J. Mahle, T. Islamoglu, G. W. Peterson, M. C. De Koning, J. Xin, O. K. Farha, J. Am. Chem. Soc. 2021, 143, 16777.
- 26G. W. Peterson, D. T. Lee, H. F. Barton, T. H. Epps III, G. N. Parsons, Nat. Rev. Mater. 2021, 6, 605.
- 27N. B. McKeown, P. M. Budd, Chem. Soc. Rev. 2006, 35, 675.
- 28A. M. M. Hasan, S. Bose, R. Roy, J. D. Marquez, C. Sharma, J. C. Nino, K. O. Kirlikovali, O. K. Farha, A. M. Evans, Adv. Mater. 2024, 36, 2405924.
- 29S. Wang, N. L. Pomerantz, Z. Dai, W. Xiea, E. E. Anderson, T. Miller, S. A. Khan, G. N. Parsons, Mater. Today Sustain. 2020, 100085, 2590.
- 30D. Jung, K. O. Kirlikovali, Z. Chen, K. B. Idrees, A. Atilgan, R. Cao, T. Islamoglu, O. K. Farha, ACS Mater. Lett. 2021, 3, 320.
- 31D. Jung, S. Su, Z. H. Syed, A. Atilgan, X. Wang, F. Sha, Y. Lei, N. C. Gianneschi, T. Islamoglu, O. K. Farha, ACS Appl. Mater. Interfaces 2022, 14, 16687.
- 32C. O'Connor, E. Brady, Y. Zheng, E. Moore, K. R. Stevens, Nat. Rev. Mater. 2022, 7, 702.
- 33X. Zheng, G. Shen, C. Wang, Y. Li, D. Dunphy, T. Hasan, C. J. Brinker, B. L. Su, Nat. Commun. 2017, 8, 14921.
- 34L. Yang, H. Xiao, Y. Qian, X. Zhao, X. Y. Kong, P. Liu, W. Xin, L. Fu, L. Jiang, L. Wen, Nat. Sustain. 2022, 5, 71.
- 35L. Yang, L. N. Y. Cao, S. Li, P. Peng, H. Qian, G. Amaratunga, F. Yang, Z. Wang, D. Wei, Nano Energy 2024, 129, 110076.
- 36Z. Liu, C. Zhang, L. Liu, T. Zhang, J. Wang, R. Wang, T. Du, C. Yang, L. Zhang, L. Xie, W. Zhu, T. Yue, J. Wang, Adv. Mater. 2021, 33, 2104099.
- 37P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, D. Wang, Adv. Mater. 2004, 16, 456.
- 38H. A. Patel, C. T. Yavuz, Chem. Commun. 2012, 48, 9989.
- 39X. Wang, L. Song, L. Zheng, D. Guan, C. Miao, J. Li, J. Li, J. Xu, Angew. Chem., Int. Ed. 2023, 135, 202308837.
- 40Z. Wang, X. Luo, Z. Song, K. Lu, S. Zhu, Y. Yang, Y. Zhang, W. Fang, J. Jin, Nat. Commun. 2022, 13, 4169.
- 41S. Wang, K. Shi, A. Tripathi, U. Chakraborty, G. N. Parsons, S. A. Khan, ACS Appl. Polym. Mater. 2020, 2, 2434.
- 42Y. Tian, Y. Chen, S. Wang, X. Wang, J. Yu, S. Zhang, B. Ding, Adv. Funct. Mater. 2024, 35, 2414229.
- 43Z. Zhu, Y. Liu, H. Hou, W. Shi, F. Qu, F. Cui, W. Wang, Environ. Sci. Technol. 2018, 52, 3027.
- 44X. Wang, P. Ma, Y. J. Jing, C. Yu, H. Qiu, C. Kang, Z. Cui, K. Hou, A. C. K. Yip, B. H. Yin, Mater. Today Sustain. 2023, 100484, 2589.
- 45Z. Yan, X. Liu, Y. Si, Z. Dai, J. Yu, B. Ding, Adv. Funct. Mater. 2022, 32, 2206018.
- 46X. Zhang, W. Huang, J. Yu, C. Zhao, Y. Si, Adv. Funct. Mater. 2024, 35, 2416857.
- 47Y. Liao, F. Yang, Y. Si, J. Yu, B. Ding, Nano Lett. 2021, 21, 8839.
- 48F. Wang, J. Dai, L. Huang, Y. Si, J. Yu, B. Ding, ACS Nano 2020, 14, 8975.
- 49F. Hui, C. Debiemme-Chouvy, Biomacromolecules 2013, 14, 585.
- 50Y. Si, J. Li, C. Zhao, Y. Deng, Y. Ma, D. Wang, G. Sun, ACS Biomater. Sci. Eng. 2017, 3, 854.
- 51C. Jiang, J. Ouyang, W. Li, X. Wang, L. Wang, Microfluid. Nanofluidics 2017, 21, 92.
- 52A. L. Kaledin, D. Troya, C. J. Karwacki, A. Balboa, W. O. Gordon, J. R. Morris, M. B. Mitchell, A. I. Frenkel, C. L. Hill, D. G. Musaev, Chem. Phys. 2019, 518, 30.
- 53Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Y. Moon, J. T. Hupp, O. K. Farha, Chem. Rev. 2017, 346, 101.
- 54B. Tanriover, S. M. S. Subasinghe, N. P. Mankad, ACS Catal. 2024, 14, 9323.
- 55A. Atilgan, T. Islamoglu, A. J. Howarth, J. T. Hupp, O. K. Farha, ACS Appl. Mater. Interfaces 2017, 9, 24555.
- 56Y. Liu, A. J. Howarth, J. T. Hupp, O. K. Farha, Angew. Chem., Int. Ed. 2015, 127, 9129.
- 57M. Wu, J. Su, D. Luo, B. Cai, Z. Zheng, D.-S. Bin, Y. Li, X. Zhou, Small 2023, 19, 2301050.
- 58X. Ren, A. Akin, H. B. Kocer, S. D. Worley, R. M. Broughton, T. S. Huang, Carbohydr. Polym. 2009, 8, 220.
10.1016/j.carbpol.2009.03.029 Google Scholar
- 59Q. Wang, Z. Sun, M. Zhang, S. Zhao, P. Luo, C. Gong, W. Liu, S. Zang, J. Am, Chem. Soc. 2022, 144, 21046.
- 60H. Tian, Z. Zhang, S. Liu, T. Dang, X. Li, Y. Lu, S. Liu, J. Mater. Chem. A 2020, 8, 12398.
- 61C. Zhou, L. Li, H. Qin, Q. Wu, L. Wang, C. Lin, B. Yang, C. Tao, S. Zhang, ACS Appl. Mater. Interfaces 2023, 15, 54582.