A Lifetime Nanosensor for In Vivo pH Quantitative Imaging and Monitoring
Yiwei Fan
Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYuetian Pei
Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Donghao Hu
School of Chemistry and Chemical Engineering & Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYukai Wu
School of Chemistry and Chemical Engineering & Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorKuangshi Sun
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorLei Chen
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorJiamiao Yin
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorWeigang Yan
Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730 China
Search for more papers by this authorMei Shi
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorWei Feng
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorXin Liu
Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Fuyou Li
School of Chemistry and Chemical Engineering & Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYiwei Fan
Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYuetian Pei
Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Donghao Hu
School of Chemistry and Chemical Engineering & Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYukai Wu
School of Chemistry and Chemical Engineering & Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorKuangshi Sun
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorLei Chen
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorJiamiao Yin
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorWeigang Yan
Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730 China
Search for more papers by this authorMei Shi
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorWei Feng
Department of Chemistry, Fudan University, Shanghai, 200433 China
Search for more papers by this authorXin Liu
Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Fuyou Li
School of Chemistry and Chemical Engineering & Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Non-invasive, in vivo quantitative imaging for long-term biomarker monitoring is crucial for elucidating disease mechanisms, advancing precision medicine, and transforming diagnostics and therapeutic strategies. However, developing chemical sensors for sustained in vivo quantitative monitoring despite sensor concentration fluctuations, excitation variability, and tissue interference remains a major challenge. Here, a long-lifetime nanosensor based on a lanthanide-dye nanocomposite is presented that overcomes these limitations, enabling precise quantitative in vivo pH monitoring. Benefiting from a 64-fold reversible change in the dye's molar extinction coefficient, this nanosensor enables the dynamic tuning of reversible non-radiative energy transfer (RNET) efficiency (6.42%–35.23%) and luminescence lifetime (265–383 µs). This nanosensor enables 4 h of monitoring of gastrointestinal pH dynamics in mice following proton pump inhibitor (PPI) administration, offering new insights into pharmacodynamic effects across different administration routes and dosages and inter-individual variability in drug efficacy. Moreover, coordination with lanthanide nanocrystals induces a significant shift in the dye's pKa, highlighting the importance of nanomaterial interface engineering. This work establishes a versatile platform for in vivo diagnostics and therapeutic monitoring, marking a significant step forward in precision medicine.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202502806-sup-0001-SuppMat.docx17 MB | Supporting Information |
smll202502806-sup-0002-VideoS1.mp4420.3 KB | Supplemental Video 1 |
smll202502806-sup-0003-VideoS2.mp41.7 MB | Supplemental Video 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. R. Casar, C. A. McLellan, C. Shi, A. Stiber, A. Lay, C. Siefe, A. Parakh, M. Gaerlan, X. W. Gu, M. B. Goodman, J. A. Dionne, Nature 2025, 637, 76; b) N. Fardian-Melamed, A. Skripka, B. Ursprung, C. Lee, T. P. Darlington, A. Teitelboim, X. Qi, M. Wang, J. M. Gerton, B. E. Cohen, E. M. Chan, P. J. Schuck, Nature 2025, 637, 70; c) C. Zhang, B. Nan, J. Xu, T. Yang, L. Xu, C. Lu, X.-B. Zhang, J. Rao, G. Song, Nat. Biomed. Eng. 2024, https://doi.org/10.1038/s41551-024-01286-4; d) C. Lu, S. Liao, B. Chen, L. Xu, N. Wu, D. Lu, H. Kang, X.-B. Zhang, G. Song, Nat. Mater. 2024, 24, 133; e) D. Li, M. Jia, T. Jia, G. Chen, Adv. Mater. 2024, 36, 2309452; f) S. He, P. Cheng, K. Pu, Nat. Biomed. Eng. 2023, 7, 281.
- 2B. A. Webb, M. Chimenti, M. P. Jacobson, D. L. Barber, Nat. Rev. Cancer 2011, 11, 671.
- 3Z. Fang, C. Wang, J. Yang, Z. Song, C. Xie, Y. Ji, Z. Wang, X. Du, Q. Zheng, C. Chen, Z. Hu, Y. Zhong, Nat. Nanotechnol. 2024, 19, 124.
- 4a) M. Zhao, J. Wang, Z. Lei, L. Lu, S. Wang, H. Zhang, B. Li, F. Zhang, Angew. Chem., Int. Ed. 2021, 60, 5091; b) R. Mehta, D. D. Rivera, D. J. Reilley, D. Tan, P. W. Thomas, A. Hinojosa, A. C. Stewart, Z. Cheng, C. A. Thomas, M. W. Crowder, A. N. Alexandrova, W. Fast, E. L. Que, J. Am. Chem. Soc. 2021, 143, 8314; c) K. Umezawa, M. Yoshida, M. Kamiya, T. Yamasoba, Y. Urano, Nat. Chem. 2017, 9, 279; d) X. Jiang, J. Chen, A. Bajić, C. Zhang, X. Song, S. L. Carroll, Z.-L. Cai, M. Tang, M. Xue, N. Cheng, C. P. Schaaf, F. Li, K. R. MacKenzie, A. C. M. Ferreon, F. Xia, M. C. Wang, M. Maletić-Savatić, J. Wang, Nat. Commun. 2017, 8, 16087; e) S. Cheng, B. Shen, W. Yuan, X. Zhou, Q. Liu, M. Kong, Y. Shi, P. Yang, W. Feng, F. Li, ACS Cent. Sci. 2019, 5, 299; f) T. Zhou, J. Wang, J. Xu, C. Zheng, Y. Niu, C. Wang, F. Xu, L. Yuan, X. Zhao, L. Liang, P. Xu, Anal. Chem. 2020, 92, 5064; g) X. Zhang, Y. Chen, H. He, S. Wang, Z. Lei, F. Zhang, Angew. Chem., Int. Ed. 2021, 60, 26337; h) J. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Nat. Mater. 2019, 18, 1133. i) Y. Li, D. Hu, M. Kong, Y. Gu, Z. Zhou, M. Shi, G. Zhang, W. Feng, J. Rare Earth 2024, https://doi.org/10.1016/j.jre.2024.07.024.
- 5a) G. Hong, A. L. Antaris, H. Dai, Nat. Biomed. Eng. 2017, 1, 0010; b) Y. Yang, Q. Jiang, F. Zhang, Chem. Rev. 2024, 124, 554.
- 6a) A. J. Bowman, C. Huang, M. J. Schnitzer, M. A. Kasevich, Science 2023, 380, 1270; b) M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641; c) W. Becker, J. Microsc. 2012, 247, 119; d) R. Datta, T. M. Heaster, J. T. Sharick, A. A. Gillette, M. C. Skala, J. Biomed. Opt. 2020, 25, 071203; e) Z. Chen, L. Huang, D. Gao, Z. Bao, D. Hu, W. Zheng, J. Chen, J. Liao, H. Zheng, Z. Sheng, Adv. Sci. 2025, 12, 2411272. f) X. Zhu, X. Liu, H. Zhang, M. Zhao, P. Pei, Y. Chen, Y. Yang, L. Lu, P. Yu, C. Sun, J. Ming, I. M. Ábrahám, A. M. El-Toni, A. Khan, F. Zhang, Angew. Chem., Int. Ed. 2021, 60, 23545.
- 7a) X. Zhu, X. Wang, H. Zhang, F. Zhang, Angew. Chem., Int. Ed. 2022, 61, 202209378; b) Y. Fan, P. Wang, Y. Lu, R. Wang, L. Zhou, X. Zheng, X. Li, J. A. Piper, F. Zhang, Nat. Nanotechnol. 2018, 13, 941; c) Y. Gu, Z. Guo, W. Yuan, M. Kong, Y. Liu, Y. Liu, Y. Gao, W. Feng, F. Wang, J. Zhou, D. Jin, F. Li, Nat. Photonics 2019, 13, 525. d) B. Shi, L. Zhang, K. Yan, J. Ming, Z. H. Chen, Y. Chen, H. S. He, H. X. Zhang, L. X. Wang, S. F. Wang, F. Zhang, Angew. Chem., Int. Ed. 2024, 63, 202410118.
- 8a) M. Kong, Y. Gu, Y. Liu, Y. Shi, N. Wu, W. Feng, F. Li, Small 2019, 15, 1904487; b) M. Zhao, B. Li, Y. Wu, H. He, X. Zhu, H. Zhang, C. Dou, L. Feng, Y. Fan, F. Zhang, Adv. Mater. 2020, 32, 2001172; c) M. Zhao, H. Zhuang, H. Zhang, B. Li, J. Ming, X. Chen, M. Chen, Angew. Chem., Int. Ed. 2022, 61, 202209592; d) Y. Chai, X. Zhou, X. Chen, C. Wen, J. Ke, W. Feng, F. Li, ACS Appl. Mater. Interfaces 2022, 14, 14004.
- 9a) B. Chang, D. Li, Y. Ren, C. Qu, X. Shi, R. Liu, H. Liu, J. Tian, Z. Hu, T. Sun, Z. Cheng, Nat. Biomed. Eng. 2022, 6, 629; b) Y. Ning, S. Cheng, J. X. Wang, Y. W. Liu, W. Feng, F. Li, J. L. Zhang, Chem. Sci. 2019, 10, 4227; c) C. Chen, P. Zhang, L. Zhang, D. Gao, G. Gao, Y. Yang, W. Li, P. Gong, L. Cai, Chem. Commun. 2015, 51, 11162.
- 10a) V. French, C. Du, E. J. Foster, J. Bioresour. Bioprod. 2023, 8, 399; b) H. Ma, Z. Cheng, X. Li, B. Li, Y. Fu, J. Jiang, J. Bioresour. Bioprod. 2023, 8, 15.
- 11a) A. Sedlmeier, H. H. Gorris, Chem. Soc. Rev. 2015, 44, 1526; b) D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, P. J. Schuck, Nat. Photon. 2018, 12, 402; c) W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, Nat. Photon. 2012, 6, 560; d) G. Bao, S. Wen, G. Lin, J. Yuan, J. Lin, K.-L. Wong, J.-C. G. Bünzli, D. Jin, Coor. Chem. Rev. 2021, 21, 9862.
- 12S. J. Moo, K. Nayoung, J. Neurogastroenterol. Motil. 2013, 19, 25.
- 13J. E. Kurlander, L. Laine, H. M. Kim, C. B. Roberts, D. Saffar, A. Myers, R. Holleman, Y. Gao, M. Shank, R. Nelson, J. Forman, C. D. Helfrich, S. L. Krein, S. D. Saini, Y.-X. Yang, BMJ 2024, 385, 076484.
- 14a) E. A. Lew, J. R. Pisegna, J. A. Starr, E. F. Soffer, C. Forsmark, I. M. Modlin, J. H. Walsh, M. Beg, W. Bochenek, D. C. Metz, Gastroenterology 2000, 118, 696. b) S. H. Pang, D. Y. Graham, Therap. Adv. Gastroenterol. 2010, 3, 11.
- 15a) S. Cheng, Q. Liu, X. Zhou, Y. Gu, W. Yuan, W. Feng, F. Li, ACS Appl. Mater. Interfaces 2020, 12, 25557; b) W. Huang, R. Chen, Y. Peng, F. Duan, Y. Huang, W. Guo, X. Chen, L. Nie, ACS Nano 2019, 13, 9561.