Controllable Ultrathin Thickness of Carbon Nanotubes Layers and Ultralow Equivalent Content in Alternating PMMA-Based Nanocomposites for Optimized Impedance Matching to Achieve Wideband Electromagnetic Absorption
Zirui Yu
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Danfeng Zhou
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuan Yuan
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorYuanlu Xiong
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorGuoqiang Luo
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Qiang Shen
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZirui Yu
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Danfeng Zhou
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuan Yuan
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorYuanlu Xiong
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorGuoqiang Luo
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Qiang Shen
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572024 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Traditional polymer-based nanocomposites for electromagnetic wave absorption (EMWA) often require high filler content, which limits their mechanical durability and practical applications. In this study, a novel strategy is proposed, meticulously designed and fabricated using an innovative exponential unit stacking approach, to construct an alternating structure in polymethylmethacrylate (PMMA)/carbon nanotubes (CNTs) nanocomposites, achieving “two birds, one stone” benefits: precise controlling of ultrathin thickness of CNTs layers and ultralow equivalent content for high-performance EMWA. Notably, with a macroscopic thickness of 2.0 mm and an equivalent CNTs mass fraction of 1 wt.%, the 64-unit structure sample features ultrathin PMMA/CNTs (CNTs) layers of 1 µm, achieving a minimal reflection loss value of −17.33 dB and an effective absorption bandwidth value of 1.28 GHz at the X-band, significantly outperforming the single-unit structure sample with an RLmin of −4.19 dB and no EAB. Both theoretical simulations and experimental results demonstrate that the enhanced EMWA performance is attributed to optimized impedance matching, even with ultrathin CNTs layers and ultralow filler content by constructing an alternating structure. This strategy, rooted in heterostructure interface engineering, achieves wideband EMWA while constructing a robust multilayer film stack, paves the way for advanced and cost-effective applications in electromagnetic protection.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202502500-sup-0001-SuppMat.docx2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang, T. Wang, N. Wen, H. Chen, T. Cong, J. Muhammad, X. Yang, X. Wang, Z. Fan, L. Pan, Nano-Micro Lett. 2021, 13, 144.
- 2Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia, S. Ma, Z. Yin, Y. Huang, Nano-Micro Lett. 2021, 13, 56.
- 3D. Zhi, T. Li, J. Li, H. Ren, F. Meng, Composites, Part B 2021, 211, 108642.
- 4Y. Guo, K. Ruan, G. Wang, J. Gu, Sci. Bull. 2023, 68, 1195.
- 5X. Luo, G. Yang, D. W. Schubert, Adv. Compos. Hybrid Mater. 2022, 5, 250.
- 6W. Hu, J. Zhang, B. Liu, C. Zhang, Q. Zhao, Z. Sun, H. Cao, G. Zhu, Composites Commun. 2021, 24, 100616.
- 7H. Duan, H. Zhu, J. Gao, D.-X. Yan, K. Dai, Y. Yang, G. Zhao, Y. Liu, Z.-M. Li, J. Mater. Chem. A 2020, 8, 9146.
- 8H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min, Z.-Z. Yu, Nano-Micro Lett. 2022, 14, 129.
- 9P. Li, H. Wang, Z. Ju, Z. Jin, J. Ma, L. Yang, X. Zhao, H. Xu, Y. Liu, ACS Nano 2024, 18, 2906.
- 10P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Composites Commun. 2021, 24, 100653.
- 11I. R. Ibrahim, K. A. Matori, I. Ismail, Z. Awang, S. N. A. Rusly, R. Nazlan, F. Mohd Idris, M. M. Muhammad Zulkimi, N. H. Abdullah, M. S. Mustaffa, F. N. Shafiee, M. Ertugrul, Sci. Rep. 2020, 10, 3135.
- 12L. Lei, Z. Yao, J. Zhou, B. Wei, H. Fan, Compos. Sci. Technol. 2020, 200, 108479.
- 13M. Ma, Z. Liao, X. Su, Q. Zheng, Y. Liu, Y. Wang, Y. Ma, F. Wan, J. Colloid Interface Sci. 2022, 608, 2203.
- 14J. Chen, J. Zheng, Q. Huang, F. Wang, G. Ji, ACS Appl. Mater. Interfaces 2021, 13, 36182.
- 15A. Sheng, W. Ren, Y. Yang, D.-X. Yan, H. Duan, G. Zhao, Y. Liu, Z.-M. Li, Composites, Part A 2020, 129, 105692.
- 16Y. Li, C. Nie, D. Song, Y. Liu, Y. Jia, H. Zheng, Polym. Compos. 2023, 44, 3313.
- 17Y. Zhang, K. Ruan, J. Gu, Small 2021, 17, 2101951.
- 18Q. Peng, M. Ma, Q. Chu, H. Lin, W. Tao, W. Shao, S. Chen, Y. Shi, H. He, X. Wang, J. Mater. Chem. A 2023, 11, 10857.
- 19J. Guo, Z. Chen, X. Xu, X. Li, H. Liu, S. Xi, W. Abdul, Q. Wu, P. Zhang, B. B. Xu, J. Zhu, Z. Guo, Adv. Compos. Hybrid Mater. 2022, 5, 1769.
- 20R. Sun, Y. Shen, L. Zhiqiang, Carbon 2022, 186, 9.
- 21C. Wang, J. Li, S. Guo, Composites, Part A 2019, 125, 105522.
- 22M. Wang, L. Tian, Q. Zhang, X. You, J. Yang, S. Dong, Carbon 2023, 202, 414.
- 23S. Zheng, Y. Wang, X. Wang, H. Lu, Mater. Today Phys. 2024, 40, 101330.
- 24R. Kumar, S. Sahoo, E. Joanni, Carbon 2023, 211, 118072.
- 25L. Li, Z. Ma, P. Xu, B. Zhou, Q. Li, J. Ma, C. He, Y. Feng, C. Liu, Composites, Part A 2020, 139, 106134.
- 26M. F. Elmahaishi, R. S. Azis, I. Ismail, F. D. Muhammad, J. Mater. Res. Technol. 2022, 20, 2188.
- 27Q. Li, J. Tan, Z. Wu, L. Wang, W. You, L. Wu, R. Che, Carbon 2023, 201, 150.
- 28D. Zhou, Z. Yu, H. Yuan, Y. Zhu, G. Luo, X. Jiang, Q. Shen, L. Zhang, Composites, Part A 2024, 181, 108154.
- 29D. Wang, J. Jin, Y. Guo, H. Liu, Z. Guo, C. Liu, C. Shen, Carbon 2023, 202, 464.
- 30S. Zhang, B. Cheng, Z. Jia, Z. Zhao, X. Jin, Z. Zhao, G. Wu, Adv. Compos. Hybrid Mater. 2022, 5, 1658.
- 31Y. Wang, L. Yao, Q. Zheng, M.-S. Cao, Nano Res. 2022, 15, 6751.
- 32J. Pan, X. Li, W. Xia, H. Qu, J. Li, C. Jiang, T. Wang, J. He, Chem. Eng. J. 2023, 452, 139601.
- 33S. Li, T. Ma, Z. Chai, Z. Zhang, M. Zhu, X. Tang, X. Zhao, Y. Lu, Q. Lan, Z. Wang, F. He, Z. Wang, T. Liu, Carbon 2023, 207, 105.
- 34S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin, Y. Huang, J. Yang, Y. Hong, J. Liu, Nano-Micro Lett. 2022, 14, 68.
- 35Y. Zhang, K. Ruan, K. Zhou, J. Gu, Adv. Mater. 2023, 35, 2211642.
- 36Y.-f. Wang, L. Zhu, L. Han, X.-h. Zhou, Y. Gao, L.-h. Lv, ACS Appl. Nano Mater. 2023, 6, 7107.
- 37L. Yu, Q. Zhu, Z. Guo, Y. Cheng, Z. Jia, G. Wu, J. Mater. Sci. Technol. 2024, 170, 129.
- 38S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan, H. Chen, Y. Dai, J. Chen, Appl. Surf. Sci. 2019, 481, 99.
- 39M. Feng, K. Zhang, H. Cheng, Y. Li, B. Liu, B. Liang, Compos. Sci. Technol. 2023, 239, 110050.
- 40D. Lan, Y. Hu, M. Wang, Y. Wang, Z. Gao, Z. Jia, Composites Commun. 2024, 50, 101993.
- 41Y. Qiu, Y. Lin, H. Yang, L. Wang, M. Wang, B. Wen, Chem. Eng. J. 2020, 383, 123207.
- 42M. Green, X. Chen, J. Materiomics 2019, 5, 503.
- 43A. A. Isari, A. Ghaffarkhah, S. A. Hashemi, S. Wuttke, M. Arjmand, Adv. Mater. 2024, 36, 2310683.
- 44M. Qin, L. Zhang, H. Wu, Adv. Sci. 2022, 9, 2105553.
- 45H. Wang, F. Meng, F. Huang, C. Jing, Y. Li, W. Wei, Z. Zhou, ACS Appl. Mater. Interfaces 2019, 11, 12142.
- 46H. Ren, T. Li, H. Wang, Z. Guo, T. Chen, F. Meng, Chem. Eng. J. 2022, 427, 131582.
- 47M. Yuan, B. Li, Y. Du, J. Liu, X. Zhou, J. Cui, H. Lv, R. Che, Adv. Mater. 2025, 37, 2417580.
- 48H. Lv, Y. Yao, S. Li, G. Wu, B. Zhao, X. Zhou, R. L. Dupont, U. I. Kara, Y. Zhou, S. Xi, B. Liu, R. Che, J. Zhang, H. Xu, S. Adera, R. Wu, X. Wang, Nat. Commun. 2023, 14, 1982.
- 49H. Lv, Z. Yang, P. L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z. J. Xu, Adv. Mater. 2018, 30, 1706343.
- 50W. Yang, B. Jiang, S. Che, L. Yan, Z.-X. Li, Y.-F. Li, New Carbon Mater. 2021, 36, 1016.
- 51Z. Jia, D. Lan, M. Chang, Y. Han, G. Wu, Mater. Today Phys. 2023, 37, 101215.