Efficient Electrochemical Hydrogenation of Toluene by Relay Catalysis Over a Ru Single Atom/Nanoparticle Dual-Site Catalyst
Lingxia Zheng
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorLubo Zhang
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorJiawei Bai
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorYifeng Zhang
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorSentao Wei
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorChenlong Zhang
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorGuojing Zhang
Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Moganshan Institute ZJUT, Deqing, 313200 China
Search for more papers by this authorCorresponding Author
Yongbing Ma
Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Moganshan Institute ZJUT, Deqing, 313200 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXin Wang
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorCorresponding Author
Yi Jia
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Moganshan Institute ZJUT, Deqing, 313200 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLingxia Zheng
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorLubo Zhang
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorJiawei Bai
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorYifeng Zhang
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorSentao Wei
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorChenlong Zhang
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorGuojing Zhang
Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Moganshan Institute ZJUT, Deqing, 313200 China
Search for more papers by this authorCorresponding Author
Yongbing Ma
Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Moganshan Institute ZJUT, Deqing, 313200 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXin Wang
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Search for more papers by this authorCorresponding Author
Yi Jia
Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology (ZJUT), Hangzhou, 310014 China
Moganshan Institute ZJUT, Deqing, 313200 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The methylcyclohexane-toluene-hydrogen (MTH) cycle is one of the most promising liquid organic hydrogen carrier (LOHC) systems. Despite the good performance of carbon-supported Pt nanoparticles, the drawbacks of noble metals, such as high cost and limited availability, hinder the industrial applications of these catalyst technologies. Herein, a ruthenium single-atom/nanoparticle (Ru SA/NP) dual-site electrocatalyst is developed with low metal loadings and notable electrochemical hydrogenation (ECH) efficiency of toluene (TL) to methylcyclohexane (MCH) in an electrochemical microreactor. The results reveal that within a wide potential window (∆V = 500 mV), the optimal catalyst Ru4-CN exhibits ≈100% Faraday efficiency (FE), high MCH selectivity, and significant inhibition of the hydrogen evolution reaction (HER). At a cell voltage of 2.0 V, the yield of MCH reaches 657.12 µmol h−1 mgRu−1, which is ≈28 times higher than that of commercial Ru/C catalyst. Experimental and theoretical analyses indicate that TL preferentially adsorbs on Ru NP, while hydrogen atoms adsorb on Ru-SA to form H*, which is then delivered to Ru-NP to hydrogenate TL. This work brings forth a special design of Ru SA/NP dual-sites on the electrochemical hydrogenation of organic substrates and sheds light on the structure-activity relationships for future studies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202501665-sup-0001-SuppMat.docx8.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem., Int. Ed. 2009, 48, 6608; b) L. Pingkuo, H. Xue, Int. J. Hydrogen Energy 2022, 47, 9485; c) C. Chu, K. Wu, B. Luo, Q. Cao, H. Zhang, Carbon Resour. Convers. 2023, 6, 334.
- 2a) M. Arbabzadeh, R. Sioshansi, J. X. Johnson, G. A. Keoleian, Nat. Commun. 2019, 10, 3413; b) M. D. Allendorf, Z. Hulvey, T. Gennett, A. Ahmed, T. Autrey, J. Camp, E. Seon Cho, H. Furukawa, M. Haranczyk, M. Head-Gordon, S. Jeong, A. Karkamkar, D.-J. Liu, J. R. Long, K. R. Meihaus, I. H. Nayyar, R. Nazarov, D. J. Siegel, V. Stavila, J. J. Urban, S. P. Veccham, B. C. Wood, Energy Environ. Sci. 2018, 11, 2784.
- 3D. Koutsonikolas, S. Kaldis, V. T. Zaspalis, G. P. Sakellaropoulos, Int. J. Hydrogen Energy 2012, 37, 16302.
- 4a) J. Yang, H. Qin, K. Yan, X. Cheng, J. Wen, Adv. Synth. Catal. 2021, 363, 5407; b) P. Nikolaidis, A. Poullikkas, Renew. Sust. Energy Rev. 2017, 67, 597; c) Z. Jiang, Q. Pan, J. Xu, T. Fang, Int. J. Hydrogen Energy 2014, 39, 17442; d) C. L. Aardahl, S. D. Rassat, Int. J. Hydrogen Energy 2009, 34, 6676; e) C. Lang, Y. Jia, X. Yao, Energy Storage Mater. 2020, 26, 290; f) Y. Sekine, T. Higo, Top. Catal. 2021, 64, 470.
- 5a) M. Markiewicz, Y.-Q. Zhang, M. T. Empl, M. Lykaki, J. Thöming, P. Steinberg, S. Stolte, Energy Environ. Sci. 2019, 12, 366;
b) W. Wang, H. Liu, T. Wu, P. Zhang, G. Ding, S. Liang, T. Jiang, B. Han, J. Mol. Catal. A-Chem. 2012, 355, 174;
c) N. Itoh, S. Watanabe, K. Kawasoe, T. Sato, T. Tsuji, Desalination 2008, 234, 261;
d) M. Chettibi, A.-G. Boudjahem, M. Bettahar, Transit. Met. Chem. 2010, 36, 163;
10.1007/s11243-010-9449-8 Google Scholare) U. B. Demirci, P. Miele, J. Power Sources 2010, 195, 4030; f) S. Akbayrak, S. Özkar, Int. J. Hydrogen Energy 2018, 43, 18592; g) J. M. B. Richard, J. Keaton, R. T. Baker, J. Am. Chem. Soc. 2007, 129, 6952.
- 6a) Y. Okada, E. Sasaki, E. Watanabe, S. Hyodo, H. Nishijima, Int. J. Hydrogen Energy 2006, 31, 1348;
b) K. Mazloomi, C. Gomes, Renew. Sust. Energy Rev. 2012, 16, 3024;
c) E. P. Jose´, L. Rodrı´guez, Electrochim. Acta 2000, 45, 4279.
10.1016/S0013-4686(00)00561-2 Google Scholar
- 7Q. Zhou, R. Hu, Z. Zhu, ACS Appl. Nano Mater. 2024, 7, 23046.
- 8A. Oda, T. Fujita, Y. Yamamoto, K. Sawabe, A. Satsuma, ACS Catal. 2023, 13, 10026.
- 9Y. Wang, H. Yu, Y. He, S. Xiang, X. Qing, L. Yang, J. Chen, Y. Si, J. Zhang, J. Diao, N. Wang, M. Peng, D. Ma, H. Liu, Angew. Chem., Int. Ed. 2025, 64, 202415542.
- 10a) X. Yan, Q. Zhang, M. Zhu, Z. Wang, J. Mol. Catal. A-Chem. 2016, 413, 85; b) L. Chen, P. Verma, K. Hou, Z. Qi, S. Zhang, Y. S. Liu, J. Guo, V. Stavila, M. D. Allendorf, L. Zheng, M. Salmeron, D. Prendergast, G. A. Somorjai, J. Su, Nat. Commun. 2022, 13, 1092.
- 11a) K. Nagasawa, Y. Sawaguchi, A. Kato, Y. Nishiki, S. Mitsushima, Electrocatalysis 2017, 8, 164;
b) E. Higuchi, Y. Ueda, M. Chiku, H. Inoue, Electrocatalysis 2017, 9, 226.
10.1007/s12678-017-0432-4 Google Scholar
- 12a) K. Matsuoka, K. Miyoshi, Y. Sato, J. Power Sources 2017, 343, 156; b) K. Shigemasa, A. Atienza-Márquez, K. Inoue, S. Jang, F. I. R. Peña, T. Araki, T. Terao, K. Nagasawa, S. Mitsushima, J. Power Sources 2023, 554, 232304.
- 13K. Nagasawa, S. Mitsushima, J. Jpn. Pet. Inst. 2024, 67, 97.
- 14S. Mitsushima, Y. Takakuwa, K. Nagasawa, Y. Sawaguchi, Y. Kohno, K. Matsuzawa, Z. Awaludin, A. Kato, Y. Nishiki, Electrocatalysis 2015, 7, 127.
10.1007/s12678-015-0289-3 Google Scholar
- 15a) K. Nagasawa, A. Kato, Y. Nishiki, Y. Matsumura, M. Atobe, S. Mitsushima, Electrochim. Acta 2017, 246, 459; b) A. Kong, M. Liu, H. Zhang, Z. Cao, J. Zhang, W. Li, Y. Han, Y. Fu, Chem. Eng. J. 2022, 445, 136719; c) A. Fukazawa, Y. Shimizu, N. Shida, M. Atobe, Org. Biomol. Chem. 2021, 19, 7363.
- 16T. Imada, M. Chiku, E. Higuchi, H. Inoue, ACS Catal. 2020, 10, 13718.
- 17Y. Inami, H. Ogihara, S. Nagamatsu, K. Asakura, I. Yamanaka, ACS Catal. 2019, 9, 2448.
- 18Y. Imami, H. Ogihara, I. Yamanaka, ChemistrySelect 2017, 2, 1939.
10.1002/slct.201602070 Google Scholar
- 19a) A. Kumar, V. Q. Bui, J. Lee, L. Wang, A. R. Jadhav, X. Liu, X. Shao, Y. Liu, J. Yu, Y. Hwang, H. T. D. Bui, S. Ajmal, M. G. Kim, S. G. Kim, G. S. Park, Y. Kawazoe, H. Lee, Nat. Commun. 2021, 12, 6766; b) L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang, K. Adair, Z. Wang, J. Chen, Z. Song, J. Li, M. N. Banis, R. Li, T. K. Sham, M. Gu, L. M. Liu, G. A. Botton, X. Sun, Nat. Commun. 2019, 10, 4936.
- 20B. Lu, L. Guo, F. Wu, Y. Peng, J. E. Lu, T. J. Smart, N. Wang, Y. Z. Finfrock, D. Morris, P. Zhang, N. Li, P. Gao, Y. Ping, S. Chen, Nat. Commun. 2019, 10, 631.
- 21L. Zhang, G. Meng, W. Zhang, X. Li, Z. Zhang, M. Yang, Y. Wu, D. Wang, Y. Li, ACS Catal. 2023, 13, 2268.
- 22a) J. Yang, B. Chen, X. Liu, W. Liu, Z. Li, J. Dong, W. Chen, W. Yan, T. Yao, X. Duan, Y. Wu, Y. Li, Angew. Chem. Int. Ed. Engl. 2018, 57, 9495; b) S. Dai, J. P. Chou, K. W. Wang, Y. Y. Hsu, A. Hu, X. Pan, T. Y. Chen, Nat. Commun. 2019, 10, 440.
- 23L. S. R. Kumara, O. Sakata, S. Kohara, A. Yang, C. Song, K. Kusada, H. Kobayashi, H. Kitagawa, Phys. Chem. Chem. Phys. 2016, 18, 30622.
- 24a) Y. Inami, H. Ogihara, I. Yamanaka, Electrocatalysis 2017, 9, 204;
10.1007/s12678-017-0409-3 Google Scholarb) K. Otsuka, I. Yamanaka, Catal. Today 1998, 41, 311; c) K. Otsuka, I. Yamanaka, Catal. Today 2000, 57, 71.
- 25a) C.-H. Chan, S. Y. Lee, S. S. Han, Int. J. Hydrogen Energy 2023, 48, 33590; b) J. Cho, S. Lee, S. P. Yoon, J. Han, S. W. Nam, K.-Y. Lee, H. C. Ham, ACS Catal. 2017, 7, 2553.