Boosted Nanocrystalline Magnetic Softness via Atomic Immiscibility Induced Chemical Heterogeneity
Kebing Wang
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032 China
Search for more papers by this authorCorresponding Author
Guang Liu
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJianhu Gong
Division of Microelectronic Materials and Devices, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorLingfeng Wang
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032 China
Search for more papers by this authorQiming Chen
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032 China
Search for more papers by this authorXinyang Zhang
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZhengming Zhang
Division of Microelectronic Materials and Devices, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorMi Yan
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Chen Wu
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorKebing Wang
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032 China
Search for more papers by this authorCorresponding Author
Guang Liu
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJianhu Gong
Division of Microelectronic Materials and Devices, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorLingfeng Wang
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032 China
Search for more papers by this authorQiming Chen
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032 China
Search for more papers by this authorXinyang Zhang
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZhengming Zhang
Division of Microelectronic Materials and Devices, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorMi Yan
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Chen Wu
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027 China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Soft magnetic nanocrystalline alloys are technically crucial in power electronics, whereas confront the traded-off between high saturation magnetic flux density (Bs) and low coercivity (Hc) due to the incorporation of non-magnetic elements or harsh crystallization process. To tackle this challenge, deep supercooling solidification and strong immiscibility system are employed to prepare Fe86Si1.3B9C2Cu1.7 nanocrystalline alloy with superior magnetic softness. Benefitting from synergistically enhanced glass-forming ability (GFA) and atomic immiscibility, grain nucleation is thermodynamically promoted with the formation of dense Cu-rich clusters and Fe-rich regions. Such localized chemical heterogeneity induces significant elemental gradients between the amorphous matrix and growing grains, resulting in enhanced competitive growth and decreased grain size. Dynamic magnetization and micromagnetic simulations reveal that the dense and fine nanocrystalline microstructure contributes to smooth domain motion as well as reduced magnetic anisotropy energy and exchange energy, giving rise to exceptional magnetic properties (Bs = 1.90 T, Hc = 4.0 A m−1). As such, this study not only unveils chemical heterogeneity to enhance soft magnetic properties of nanocrystalline alloys but also provides a novel strategy for tailoring the microstructure of amorphous/nanocrystalline alloys to improve electrical, mechanical, and catalytic properties.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202501547-sup-0001-SuppMat.docx25.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. M. Silveyra, E. Ferrara, D. L. Huber, T. C. Monson, Science 2018, 362, aao0195; b) G. Herzer, Acta Mater. 2013, 61, 718; c) G. Y. Ouyang, X. Chen, Y. F. Liang, C. Macziewski, J. Cui, J. Magn. Magn. Mater. 2019, 481, 234.
- 2a) Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 1988, 64, 6044; b) E. A. Theisen, IEEE Trans. Magn. 2022, 58, 2001207; c) K. Suzuki, J. Magn. Magn. Mater. 2024, 592, 171677.
- 3a) R. C. Ohandley, C. P. Chou, N. Decristofaro, J. Appl. Phys. 1979, 50, 3603; b) P. Duwez, S. C. H. Lin, J. Appl. Phys. 1967, 38, 4096; c) A. Inoue, Y. Shinohara, J. S. Gook, Mater. Trans. JIM 1995, 36, 1427.
- 4a) L. X. Shi, Y. Shao, J. L. Jia, C. Y. Lu, K. F. Yao, Intermetallics 2024, 166, 108202; b) M. H. Han, C. Sun, Y. Meng, C. K. Liu, W. F. Zhang, H. Y. Li, H. J. Xu, T. Zhang, J. Non-Cryst. Solids 2023, 611, 122352; c) C. Sun, H. J. Xu, Y. Meng, X. C. Wang, X. B. Liu, C. K. Liu, M. H. Han, T. Zhang, Mater. Lett. 2023, 338, 134063.
- 5J. Zhou, X. S. Li, X. B. Hou, H. B. Ke, X. D. Fan, J. H. Luan, H. L. Peng, Q. S. Zeng, H. B. Lou, J. G. Wang, C. T. Liu, B. L. Shen, B. A. Sun, W. H. Wang, H. Y. Bai, Adv. Mater. 2023, 35, 13.
- 6K. I. Arai, K. Ishiyama, H. Mogi, IEEE Trans. Magn. 1989, 25, 3949.
- 7Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 1988, 64, 6044.
- 8A. Inoue, Acta Mater. 2000, 48, 279.
- 9A. Takeuchi, A. Inoue, Mater. Trans. 2005, 46, 2817.
- 10A. Urata, H. Matsumoto, S. Yoshida, A. Makino, IEEE Trans. Magn. 2011, 47, 3177.
- 11D. Y. Li, X. Li, J. Zhou, T. Y. Guo, X. Tong, B. Zhang, C. Y. Wang, H. Ke, W. Wang, J. Alloy. Compd. 2023, 952, 170012.
- 12A. R. Williams, V. L. Moruzzi, A. P. Malozemoff, K. Terakura, IEEE Trans. Magn. 1983, 19, 1983.
- 13a) X. D. Fan, L. Li, T. Zhang, W. M. Yang, A. A. He, J. Mater. Sci.-Mater. Electron. 2023, 34, 1761; b) T. Liu, F. Y. Kong, L. Xie, A. D. Wang, C. T. Chang, X. M. Wang, C. T. Liu, J. Magn. Magn. Mater. 2017, 441, 174.
- 14R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato, K. Suzuki, J. Alloy. Compd. 2017, 723, 408.
- 15J. Y. He, Z. H. Huang, J. Xu, Y. F. Wang, Y. J. Liu, G. P. Jia, M. Nie, H. Guo, R. Sun, J. Mater. Res. Technol 2024, 31, 447.
- 16H. Li, A. D. Wang, T. Liu, P. B. Chen, A. N. He, Q. Li, J. H. Luan, C. T. Liu, Mater. Today 2021, 42, 49.
- 17X. J. Jia, Y. Q. Dong, W. Zhang, L. Zhang, Y. Q. Li, A. N. He, J. W. Li, W. J. Wang, B. G. Shen, J. Mater. Sci. Technol. 2024, 184, 157.
- 18G. Herzer, IEEE Trans. Magn. 1989, 25, 3327.
- 19J. Xu, X. Liu, Y. F. Wang, Q. Shi, J. Wang, K. F. Li, Y. Z. Yang, J. Alloy. Compd. 2022, 902, 163887.
- 20T. Liu, A. N. He, F. Y. Kong, A. D. Wang, Y. Q. Dong, H. Zhang, X. M. Wang, H. W. Ni, Y. Yang, J. Mater. Sci. Technol. 2021, 68, 53.
- 21K. G. Pradeep, G. Herzer, P. Choi, D. Raabe, Acta Mater. 2014, 68, 295.
- 22F. T. L. Muniz, M. A. R. Miranda, C. M. dos Santos, J. M. Sasaki, Acta Crystallogr., Sect. A: Found. Crystallogr. 2016, 72, 385.
- 23J. D. Ayers, V. G. Harris, J. A. Sprague, W. T. Elam, H. N. Jones, Acta Mater. 1998, 46, 1861.
- 24a) Y. H. Li, X. J. Jia, Y. Q. Xu, C. T. Chang, G. Q. Xie, W. Zhang, J. Alloy. Compd. 2017, 722, 859; b) T. H. Noh, M. B. Lee, H. J. Kim, I. K. Kang, J. Appl. Phys. 1990, 67, 5568.
- 25a) Y. L. Li, N. N. Shen, J. J. Zhang, X. D. Hui, Intermetallics 2024, 170, 108335; b) S. J. Kang, Z. Chen, Q. K. Zhu, K. W. Zhang, M. A. Amin, A. S. Alshammari, H. Qiu, Z. J. Yan, M. K. He, Y. Jiang, N. D. Alqarni, Z. J. Wu, Adv. Compos. Hybrid Mater. 2024, 7, 166; c) B. Butvinová, P. Svec Sr, I. G. Janotová, L. V. Dias, D. Janickovic, I. Matko, J. Magn. Magn. Mater. 2024, 590, 171662; d) L. Lu, Q. Yan, F. Chen, A. Jain, H. Zhou, Y. Wang, Mater. Today Commun. 2024, 38, 108407; e) N. Zhang, A. N. He, G. Zhang, P. Cai, B. J. Zhang, Y. F. Ling, Y. Q. Dong, J. W. Li, Q. K. Man, B. G. Shen, J. Mater. Sci. Technol. 2024, 188, 73; f) M. Zhao, J. Pang, W. Zhang, Q. C. Xiang, Y. L. Ren, X. Y. Li, K. Q. Qiu, J. Non-Cryst. Solids 2024, 629, 122888; g) S. An, H. A. Im, Y. G. Nam, S. Yang, J. W. Lee, J. W. Jeong, J. Alloy. Compd. 2024, 1005, 176111; h) L. Xie, Q. Li, C. T. Chang, X. R. Fan, A. N. He, Y. F. Cai, Q. Chi, G. Zhang, Y. Q. Dong, J. Mater. Res. Technol. 2024, 30, 5905; i) Q. Zhang, Y. Meng, C. L. Zhao, C. T. Chang, S. J. Pang, S. X. Zhou, J. Mater. Res. Technol. 2024, 33, 5204; j) X. S. Li, J. Zhou, L. Q. Shen, B. A. Sun, H. Y. Bai, W. H. Wang, Adv. Mater. 2023, 10, 2205863.
- 26L. X. Shi, K. F. Yao, Mater. Des. 2020, 189, 108511.
- 27Z. Akase, S. Aizawa, D. Shindo, P. Sharma, A. Makino, J. Magn. Magn. Mater. 2015, 375, 10.
- 28a) J. Hu, Y. N. Shi, X. Sauvage, G. Sha, K. Lu, Science 2017, 355, 1292; b) C. Liu, J. Rao, Z. J. Sun, W. J. Lu, J. P. Best, X. H. Li, W. Z. Xia, Y. L. Gong, Y. Wei, B. Z. Zhang, J. Ding, G. Wu, E. Ma, Nat. Commun. 2024, 15, 9283.
- 29Y. Jin, R. Li, H. J. Xu, X. B. Chen, T. Zhang, Scr. Mater. 2017, 133, 14.
- 30a) X. Y. Zhang, Y. Y. Yang, Y. J. Liu, Z. Jia, Q. Q. Wang, L. G. Sun, L. C. Zhang, J. J. Kruzic, J. Lu, B. L. Shen, Adv. Mater. 2023, 35, 2303439; b) S. H. Zeng, W. Q. Ruan, Z. Chen, S. Ren, J. H. Jiang, J. Q. Lin, H. T. Zhang, Z. X. Zhang, J. N. Fu, Q. Chen, X. Liang, J. Ma, Small Methods 2024, 221, 12.
- 31A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, AIP Adv. 2014, 4, 107133.
- 32a) Y. Zhang, N. Mattern, J. Eckert, J. Appl. Phys. 2011, 110, 093506; b) J. J. Liang, S. R. Chen, E. R. Ni, J. Tang, G. H. Cao, H. L. Wang, Z. Y. Li, M. Q. Zeng, L. Fu, Adv. Mater. 2024, 36, 8.
- 33V. S. Stepanyuk, A. Szasz, A. A. Katsnelson, O. S. Trushin, H. Muller, H. Kirchmayr, J. Non-Cryst. Solids 1993, 159, 80.
- 34H. K. Kim, W. S. Jung, B. J. Lee, Acta Mater. 2009, 57, 3140.