Enhanced Backgate Tunability on Interfacial Carrier Concentration in Ionic Liquid-Gated MoS2 Devices
Qiao Chen
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Chengyu Yan
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChangshuai Lan
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorQiyang Song
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorYi Yan
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Shun Wang
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiao Chen
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Chengyu Yan
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChangshuai Lan
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorQiyang Song
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorYi Yan
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Shun Wang
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, National Gravimetry Laboratory and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 China
Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The periodic spatial modulation potential arising from the zig-zag distribution of ions at large gate voltage in an ionic liquid-gated device may enable functionalities in a similar way as nanopatterning and moiré engineering. However, the inherent coupling between periodic modulation potential and carrier concentration in ionic liquid devices has hindered further exploration. Here, the feasibility of decoupling manipulation on periodic modulation potential and carrier density in an ionic liquid device is demonstrated by using a conventional backgate. The backgate is found to have a tunability on carrier concentration comparable to that of ionic gating, especially at large ionic liquid gate voltage, by activating the bulk channels mediated back tunneling between the trapped bands and interfacial channel.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202501428-sup-0001-SuppMat.docx10.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Cherqui, M. R. Bourgeois, D. Wang, G. C. Schatz, Acc. Chem. Res. 2019, 52, 2548.
- 2D. Wang, J. Guan, J. Hu, M. R. Bourgeois, T. W. Odom, Acc. Chem. Res. 2019, 52, 2997.
- 3S. Yu, X. Wu, Y. Wang, X. Guo, L. Tong, Adv. Mater. 2017, 29, 1606128.
- 4X. Zhou, Y.-C. Hung, B. Wang, A. Bansil, Phys. Rev. Lett. 2024, 133, 236401.
- 5Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, P. Jarillo-Herrero, Nature 2018, 556, 80.
- 6C. Guo, J. Yu, S. Deng, Adv. Funct. Mater. 2023, 33, 2302265.
- 7Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, Z. Fang, Adv. Sci. 2017, 4, 1600430.
- 8P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.-U. Lee, K. Y. Ma, A.-R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, H. S. Shin, ACS Nano 2017, 11, 4041.
- 9Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 2018, 556, 43.
- 10A. P. Reddy, F. Alsallom, Y. Zhang, T. Devakul, L. Fu, Phys. Rev. B 2023, 108, 085117.
- 11Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Nature 2020, 583, 215.
- 12J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Nature 2021, 590, 249.
- 13C. Forsythe, X. Zhou, K. Watanabe, T. Taniguchi, A. Pasupathy, P. Moon, M. Koshino, P. Kim, C. R. Dean, Nat. Nanotechnol. 2018, 13, 566.
- 14D. Barcons Ruiz, H. Herzig Sheinfux, R. Hoffmann, I. Torre, H. Agarwal, R. K. Kumar, L. Vistoli, T. Taniguchi, K. Watanabe, A. Bachtold, F. H. L. Koppens, Nat. Commun. 2022, 13, 6926.
- 15D. S. Kim, R. C. Dominguez, R. Mayorga-Luna, D. Ye, J. Embley, T. Tan, Y. Ni, Z. Liu, M. Ford, F. Y. Gao, S. Arash, K. Watanabe, T. Taniguchi, S. Kim, C.-K. Shih, K. Lai, W. Yao, L. Yang, X. Li, Y. Miyahara, Nat. Mater. 2023, 23, 65.
- 16Z. Zhang, J. Xie, W. Zhao, R. Qi, C. Sanborn, S. Wang, S. Kahn, K. Watanabe, T. Taniguchi, A. Zettl, M. Crommie, F. Wang, Nat. Mater. 2024, 23, 189.
- 17J. Gu, J. Zhu, P. Knuppel, K. Watanabe, T. Taniguchi, J. Shan, K. F. Mak, Nat. Mater. 2024, 23, 219.
- 18J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, Y. Iwasa, Science 2012, 338, 1193.
- 19L. J. Li, E. C. T. O'Farrell, K. P. Loh, G. Eda, B. Özyilmaz, A. H. Castro Neto, Nature 2015, 529, 185.
- 20X. Leng, J. Garcia-Barriocanal, S. Bose, Y. Lee, A. M. Goldman, Phys. Rev. Lett. 2011, 107, 027001.
- 21S. Z. Bisri, S. Shimizu, M. Nakano, Y. Iwasa, Adv. Mater. 2017, 29, 1607054.
- 22Y. Saito, T. Nojima, Y. Iwasa, Supercond. Sci. Technol. 2016, 29, 093001.
- 23K. Ueno, H. Shimotani, H. Yuan, J. Ye, M. Kawasaki, Y. Iwasa, J. Phys. Soc. Jpn. 2014, 83, 032001.
- 24X. Xi, H. Berger, L. Forró, J. Shan, K. F. Mak, Phys. Rev. Lett. 2016, 117, 106801.
- 25J. T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. T. Yuan, H. Shimotani, Y. Iwasa, Nat. Mater. 2009, 9, 125.
- 26K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nat. Mater. 2008, 7, 855.
- 27S. Jo, D. Costanzo, H. Berger, A. F. Morpurgo, Nano Lett. 2015, 15, 1197.
- 28J. Zeng, E. Liu, Y. Fu, Z. Chen, C. Pan, C. Wang, M. Wang, Y. Wang, K. Xu, S. Cai, X. Yan, Y. Wang, X. Liu, P. Wang, S.-J. Liang, Y. Cui, H. Y. Hwang, H. Yuan, F. Miao, Nano Lett. 2018, 18, 1410.
- 29D. Costanzo, S. Jo, H. Berger, A. F. Morpurgo, Nat. Nanotechnol. 2016, 11, 339.
- 30Q. H. Chen, J. M. Lu, L. Liang, O. Zheliuk, A. Ali, P. Sheng, J. T. Ye, Phys. Rev. Lett. 2017, 119, 147002.
- 31M. Qin, X. Han, D. Ding, R. Niu, Z. Qu, Z. Wang, Z.-M. Liao, Z. Gan, Y. Huang, C. Han, J. Lu, J. Ye, Nano Lett. 2021, 21, 6800.
- 32K. Voïtchovsky, J. J. Kuna, S. A. Contera, E. Tosatti, F. Stellacci, Nat. Nanotechnol. 2010, 5, 401.
- 33S. Manne, H. E. Gaub, Science 1995, 270, 1480.
- 34A. J. Page, A. Elbourne, R. Stefanovic, M. A. Addicoat, G. G. Warr, K. Voïtchovsky, R. Atkin, Nanoscale 2014, 6, 8100.
- 35A. Elbourne, K. Voïtchovsky, G. G. Warr, R. Atkin, Chem. Sci. 2015, 6, 527.
- 36Y. Yokota, H. Hara, T. Harada, A. Imanishi, T. Uemura, J. Takeya, K.-i. Fukui, Chem. Commun. 2013, 49, 10596.
- 37M. Z. Bazant, B. D. Storey, A. A. Kornyshev, Phys. Rev. Lett. 2011, 106, 046102.
- 38V. Ivaništšev, M. V. Fedorov, Electrochem. Soc. Interface 2014, 23, 65.
- 39V. Ivaništšev, S. O'Connor, M. V. Fedorov, Electrochem. Commun. 2014, 48, 61.
- 40K. Kirchner, T. Kirchner, V. Ivaništšev, M. V. Fedorov, Electrochim. Acta 2013, 110, 762.
- 41S. Zhou, K. S. Panse, M. H. Motevaselian, N. R. Aluru, Y. Zhang, ACS Nano 2020, 14, 17515.
- 42W. Zhao, S. Bi, N. Balke, P. D. Rack, T. Z. Ward, S. V. Kalinin, S. Dai, G. Feng, ACS Appl. Mater. Interfaces 2018, 10, 43211.
- 43J. Lu, O. Zheliuk, Q. Chen, I. Leermakers, N. E. Hussey, U. Zeitler, J. Ye, Proc. Nat. Acad. Sci. 2018, 115, 3551.
- 44D. H. L. Tjhe, X. Ren, I. E. Jacobs, G. D'Avino, T. B. E. Mustafa, T. G. Marsh, L. Zhang, Y. Fu, A. E. Mansour, A. Opitz, Y. Huang, W. Zhu, A. H. Unal, S. Hoek, V. Lemaur, C. Quarti, Q. He, J.-K. Lee, I. McCulloch, M. Heeney, N. Koch, C. P. Grey, D. Beljonne, S. Fratini, H. Sirringhaus, Nat. Mater. 2024, 23, 1712.
- 45W. Xie, F. Liu, S. Shi, P. P. Ruden, C. D. Frisbie, Adv. Mater. 2014, 26, 2527.
- 46M. J. Panzer, C. D. Frisbie, JACS 2007, 6599.
- 47Q. Chen, J. Lu, L. Liang, O. Zheliuk, A. Ali El Yumin, J. Ye, Adv. Mater. 2018, 30, 1800399.
- 48E. Piatti, D. De Fazio, D. Daghero, S. R. Tamalampudi, D. Yoon, A. C. Ferrari, R. S. Gonnelli, Nano Lett. 2018, 18, 4821.
- 49M. Liao, Y. Zhu, J. Zhang, R. Zhong, J. Schneeloch, G. Gu, K. Jiang, D. Zhang, X. Ma, Q.-K. Xue, Nano Lett. 2018, 18, 5660.
- 50B. Lei, N. Z. Wang, C. Shang, F. B. Meng, L. K. Ma, X. G. Luo, T. Wu, Z. Sun, Y. Wang, Z. Jiang, B. H. Mao, Z. Liu, Y. J. Yu, Y. B. Zhang, X. H. Chen, Phys. Rev. B 2017, 95, 020503.
- 51Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, Y. Iwasa, Nat. Phys. 2015, 12, 144.
- 52D. Ding, Z. Qu, X. Han, C. Han, Q. Zhuang, X.-L. Yu, R. Niu, Z. Wang, Z. Li, Z. Gan, J. Wu, J. Lu, Nano Lett. 2022, 22, 7919.
- 53M. S. Fuhrer, J. Hone, Nat. Nanotechnol. 2013, 8, 146.
- 54J. Na, M. Shin, M.-K. Joo, J. Huh, Y. Jeong Kim, H. Jong Choi, J. Hyung Shim, G.-T. Kim, Appl. Phys. Lett. 2014, 104, 233502.
- 55S. Das, J. Appenzeller, Nano Lett. 2013, 13, 3396.
- 56Y. S. Shin, K. Lee, D. L. Duong, J. S. Kim, W. T. Kang, J. E. Kim, U. Y. Won, I. Lee, H. Lee, J. Heo, Y. H. Lee, W. J. Yu, Adv. Funct. Mater. 2020, 30, 2003688.
- 57Y. Han, M. Chae, D. Choi, I. Song, C. Ko, A. Cresti, C. Theodorou, M.-K. Joo, ACS Appl. Mater. Interfaces 2023, 15, 58605.
- 58R. Chang, Q. Chen, W. Shen, Y. Zhang, B. Zhang, S. Wang, Adv. Funct. Mater. 2023, 33, 2301010.
- 59C. Nie, B. Zhang, Y. Gao, M. Yin, X. Yi, C. Zhao, Y. Zhang, L. Luo, S. Wang, J. Phys. Chem. C 2020, 124, 16943.
- 60X. Yi, Q. Song, Q. Chen, C. Zhao, K. Watanabe, T. Taniguchi, Q. Chen, C. Yan, S. Wang, Nanotechnology 2022, 33, 355601.
- 61D. Domaretskiy, M. Philippi, M. Gibertini, N. Ubrig, I. Gutiérrez-Lezama, A. F. Morpurgo, Nat. Nanotechnol. 2022, 17, 1078.